首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Altered dendritic arborization contributes to numerous physiological processes including synaptic plasticity, behavior, learning and memory, and is one of the most consistent neuropathologic conditions found in a number of mental retardation disorders, schizophrenia, and neurodegenerative disease. COP9 signalosome (CSN), an evolutionarily conserved regulator of the Cullin-based ubiquitin ligases that act in the proteasome pathway, has been found associated with diverse debilitating syndromes, suggesting that CSN may be involved in regulation of dendritic arborization. However, the mechanism of this control, if it exists, is unknown. To address whether the CSN pathway plays a role in dendrites, we used a simple and genetically tractable model, Drosophila larval peripheral nervous system. Our model study identified the COP9 signalosome as the key and multilayer regulator of dendritic arborization. CSN is responsible for shaping the entire dendritic tree through both stimulating and then repressing dendritic branching. We identified that CSN exerts its dualistic function via control of different Cullins. In particular, CSN stimulates dendritic branching through Cullin1, and inhibits it via control of Cullin3 function. We also identified that Cullin1 acts in neurons with the substrate-specific F-box protein Slimb to target the Cubitus interruptus protein for degradation.  相似文献   

2.
3.
COP9信号传导体和26S蛋白酶体的调节盖子复合体皆为含有8个亚基的蛋白复合体,在真核生物体中普遍存在,它们的相应亚基在大小和氨基酸序列上具有一一对应关系.从NCBI站点的所有数据库中获得了裂殖酵母、酿酒酵母、线虫、果蝇、哺乳动物和拟南芥等多种生物的复合体的亚基序列共8组.COP9信号传导体与调节盖子复合体相应亚基之间的氨基酸序列一致性大于12%,它们均具有一些保守的区域,而且保守位点分布均匀,表明它们来自于同一祖先.在基于氨基酸序列构建的系统发育树中,各组序列分别形成两个分支:一个分支由COP9信号传导体亚基和相似蛋白组成,另一分支由相应的调节盖子复合体亚基和相似蛋白构成.各个分支中单细胞生物的序列位于动、植物序列的根部,表明COP9信号传导体与调节盖子复合体的基因重复发生在真核单细胞生物和多细胞生物分化以前,并且二者的亚基基因沿各自的方向独立进化.几乎所有编码两个蛋白复合体的基因在基因组中均为单拷贝,第Ⅴ、Ⅵ组的亚基保守程度最高,暗示着它们在复合体中起着关键的作用.对COP9信号传导体和调节盖子复合体的相应亚基基因两两之间进行dN/dS的相关性分析,分别鉴定出21和15对亚基编码序列间具有显著的Pearson相关关系,推测其相应亚基间可能通过承担相互关联的重要的生物学功能而协同进化.  相似文献   

4.
COP9信号传导体和26S蛋白酶体的调节盖子复合体皆为含有8个亚基的蛋白复合体,在真核生物体中普遍存在,它们的相应亚基在大小和氨基酸序列上具有一一对应关系。从NCBI站点的所有数据库中获得了裂殖酵母、酿酒酵母、线虫、果蝇、哺乳动物和拟南芥等多种生物的复合体的亚基序列共8组。COP9信号传导体与调节盖子复合体相应亚基之间的氨基酸序列一致性大于12%,它们均具有一些保守的区域,而且保守位点分布均匀,表明它们来自于同一祖先。在基于氨基酸序列构建的系统发育树中,各组序列分别形成两个分支:一个分支由COP9信号传导体亚基和相似蛋白组成,另一分支由相应的调节盖子复合体亚基和相似蛋白构成。各个分支中单细胞生物的序列位于动、植物序列的根部,表明COP9信号传导体与调节盖子复合体的基因重复发生在真核单细胞生物和多细胞生物分化以前,并且二者的亚基基因沿各自的方向独立进化。几乎所有编码两个蛋白复合体的基因在基因组中均为单拷贝,第Ⅴ、Ⅵ组的亚基保守程度最高,暗示着它们在复合体中起着关键的作用。对COP9信号传导体和调节盖子复合体的相应亚基基因两两之间进行dN/dS的相关性分析,分别鉴定出21和15对亚基编码序列间具有显著的Pearson相关关系,推测其相应亚基间可能通过承担相互关联的重要的生物学功能而协同进化。  相似文献   

5.
6.
7.
文章介绍植物COP9信号复合体(CSN)的结构特征及其与19S"盖子"结构相互关系,以及CSN参与的NEDD化/去NEDD化的过程研究进展。  相似文献   

8.
The COP9 signalosome (CSN) is an evolutionarily conserved multi-protein complex that interfaces with the ubiquitin-proteasome pathway and plays critical developmental roles in both animals and plants. Although some subunits are present only in an ∼320-kDa complex-dependent form, other subunits are also detected in configurations distinct from the 8-subunit holocomplex. To date, the only known biochemical activity intrinsic to the complex, deneddylation of the Cullin subunits from Cullin-RING ubiquitin ligases, is assigned to CSN5. As an essential step to understanding the structure and assembly of a CSN5-containing subcomplex of the CSN, we reconstituted a CSN4-5-6-7 subcomplex. The core of the subcomplex is based on a stable heterotrimeric association of CSN7, CSN4, and CSN6, requiring coexpression in a bacterial reconstitution system. To this heterotrimer, we could then add CSN5 in vitro to reconstitute a quaternary complex. Using biochemical and biophysical methods, we identified pairwise and combinatorial interactions necessary for the formation of the CSN4-5-6-7 subcomplex. The subcomplex is stabilized by three types of interactions: MPN-MPN between CSN5 and CSN6, PCI-PCI between CSN4 and CSN7, and interactions mediated through the CSN6 C terminus with CSN4 and CSN7. CSN8 was also found to interact with the CSN4-6-7 core. These data provide a strong framework for further investigation of the organization and assembly of this pivotal regulatory complex.  相似文献   

9.
COP9信号复合体(CSN)是细胞内高度保守的多亚基蛋白质复合物,主要定位于真核细胞的细胞核。在结构上与26S蛋白酶体“盖子”亚复合物高度相关。CSN的具体功能目前尚未明确,主要体现为两方面的活性:脱Nedd化作用和磷酸化作用;在细胞内同SCF遍在蛋白连接酶复合体等许多蛋白质复合物发生相互作用;调节多种信号分子靶向遍在蛋白-26S蛋白酶体的稳定性。因此,CSN是连接信号转导与蛋白质降解的分子平台。  相似文献   

10.
11.
Damage to the genetic material can affect cellular function in many ways. Therefore, maintenance of the genetic integrity is of primary importance for all cells. Upon DNA damage, cells respond immediately with proliferation arrest and repair of the lesion or apoptosis. All these consequences require recognition of the lesion and transduction of the information to effector systems. The accomplishment of DNA repair, but also of cell cycle arrest and apoptosis furthermore requires protein-protein interactions and the formation of larger protein complexes. More recent research shows that the formation of many of these aggregates depends on post-translational modifications. In this article, we have summarized the different cellular events in response to a DNA double strand break, the most severe lesion of the DNA.  相似文献   

12.
The eukaryotic cell cycle comprises a series of events, whose ordering and correct progression depends on the oscillating activity of cyclin-dependent kinases (Cdks), which safeguard timely duplication and segregation of the genome. Cell division is intimately connected to an evolutionarily conserved DNA damage response (DDR), which involves DNA repair pathways that reverse DNA lesions, as well as checkpoint pathways that inhibit cell cycle progression while repair occurs. There is increasing evidence that Cdks are involved in the DDR, in particular in DNA repair by homologous recombination and in activation of the checkpoint response. However, Cdks have to be carefully regulated, because even an excess of their activity can affect genome stability. In this review, we consider the physiological role of Cdks in the DDR.  相似文献   

13.
14.
Genome integrity is challenged by DNA damage from both endogenous and environmental sources. This damage must be repaired to allow both RNA and DNA polymerases to accurately read and duplicate the information in the genome. Multiple repair enzymes scan the DNA for problems, remove the offending damage, and restore the DNA duplex. These repair mechanisms are regulated by DNA damage response kinases including DNA-PKcs, ATM, and ATR that are activated at DNA lesions. These kinases improve the efficiency of DNA repair by phosphorylating repair proteins to modify their activities, by initiating a complex series of changes in the local chromatin structure near the damage site, and by altering the overall cellular environment to make it more conducive to repair. In this review, we focus on these three levels of regulation to illustrate how the DNA damage kinases promote efficient repair to maintain genome integrity and prevent disease.The DNA in each of our cells accumulates thousands of lesions every day. This damaged DNA must be removed for the DNA code to be read properly. Fortunately, cells contain multiple DNA repair mechanisms including: base excision repair (BER) that removes damaged bases, mismatch repair (MMR) that recognizes base incorporation errors and base damage, nucleotide excision repair (NER) that removes bulky DNA adducts, and cross-link repair (ICL) that removes interstrand cross-links. In addition, breaks in the DNA backbone are repaired via double-strand break (DSB) repair pathways including homologous recombination (HR) and nonhomologous end joining (NHEJ). Some of these mechanisms can operate independently to repair simple lesions. However, the repair of more complex lesions involving multiple DNA processing steps is regulated by the DNA damage response (DDR). For the most difficult to repair lesions, the DDR can be essential for successful repair.The DDR consists of multiple pathways, but for the purposes of this review we will focus on the DDR kinase signaling cascades controlled by the phosphatidylinositol 3-kinase-related kinases (PIKK). These kinases include DNA-dependent protein kinase (DNA-PKcs), ataxia telangiectasia-mutated (ATM), and ATM and Rad3-related (ATR). DNA-PKcs and ATM are primarily involved in DSB repair, whereas ATR responds to a wide range of DNA lesions, especially those associated with DNA replication (Cimprich and Cortez 2008). ATR’s versatility makes it essential for the viability of replicating cells in mice and humans (Brown and Baltimore 2000; de Klein et al. 2000; Cortez et al. 2001). In the case of ATM, inherited biallelic mutations cause ataxia-telangiectasia—a disorder characterized by neurodegeneration, immunodeficiency, and cancer (Shiloh 2003; Lavin 2008). ATM mutations are also frequently found in several types of tumors (Negrini et al. 2010).The DDR kinases share several common regulatory mechanisms of activation (Lovejoy and Cortez 2009). All three DDR kinases sense damage through protein–protein interactions that serve to recruit the kinases to damage sites. Once localized, posttranslational modifications and other protein–protein interactions fully activate the kinases to initate a cascade of phosphorylation events. The best-studied substrate of DNA-PKcs is actually DNA-PKcs itself, and autophosphorylation is an important step in direct religation of the DSB via nonhomologous end joining (NHEJ) (Weterings and Chen 2007; Dobbs et al. 2010). ATM and ATR have both unique and shared substrates that participate in DNA repair, checkpoint signaling, and determining cell fate decisions such as apoptosis and sensescence.  相似文献   

15.
中心体是动物细胞有丝分裂期微管组织中心,对于细胞有丝分裂期形成纺锤体、正常分裂及染色体精确分离至关重要. 中心体失调控常造成遗传物质错误分配,最终诱发肿瘤形成.因此,对中心体结构及数量的精密调控将对细胞命运起着决定 作用.目前发现,中心体至少包含100多种调节蛋白,这些蛋白在细胞内的功能各异.最近很多研究显示,多种DNA损伤修复及 应答通路的激酶或磷酸酶定位于中心体,并且参与中心体调控.本文将对中心体结构、中心体复制、中心体分离、中心体扩 增、DNA损伤与中心体异常及DNA损伤反应性蛋白在中心体调控中的功能作一综述.  相似文献   

16.
17.
The COP9 signalosome (CSN) is a conserved protein complex known to be involved in developmental processes of eukaryotic organisms. Genetic disruption of a CSN gene causes arrest during early embryonic development in mice. The Csn8 subunit is the smallest and the least conserved subunit, being absent from the CSN complex of several fungal species. Nevertheless, Csn8 is an integral component of the CSN complex in higher eukaryotes, where it is essential for life. By characterizing the mouse embryonic fibroblasts (MEFs) that express Csn8 at a low level, we found that Csn8 plays an important role in maintaining the proper duration of the G1 phase of the cell cycle. A decreased level of Csn8, either in Csn8 hypomorphic MEFs or following siRNA-mediated knockdown in HeLa cells, accelerated cell growth rate. Csn8 hypomorphic MEFs exhibited a shortened G1 duration and affected expression of G1 regulators. In contrast to Csn8, down-regulation of Csn5 impaired cell proliferation. Csn5 proteins were found both as a component of the CSN complex and outside of CSN (Csn5-f), and the amount of Csn5-f relative to CSN was increased in the Csn8 hypomorphic cells. We conclude that CSN harbors both positive and negative regulators of the cell cycle and therefore is poised to influence the fate of a cell at the crossroad of cell division, differentiation, and senescence.  相似文献   

18.
19.
The COP9 signalosome is a highly conserved protein complex initially identified as a repressor of photomorphogenesis. Here, we report that subunit 6 of the Arabidopsis COP9 signalosome is encoded by a family of two genes (CSN6A and CSN6B) located on chromosomes V and IV, respectively. The CSN6A and CSN6B proteins share 87% amino acid identity and contain a MPR1p and PAD1p N-terminal (MPN) domain at the N-terminal region. The CSN6 proteins share homology with CSN5 and belong to the Mov34 superfamily of proteins. CSN6 proteins present only in the complex form and coimmunoprecipitate with other known subunits of the COP9 signalosome. Partial loss-of-function strains of the COP9 signalosome created by antisense and cosuppression with CSN6A exhibit diverse developmental defects, including homeotic organ transformation, symmetric body organization, and organ boundary definition. Protein blot analysis revealed that the defective plants accumulate significant amounts of ubiquitinated proteins, supporting the conclusion that the COP9 signalosome regulates multifaceted developmental processes through its involvement in ubiquitin/proteasome-mediated protein degradation.  相似文献   

20.
机体细胞在多种化学物质和内外环境不断攻击下会诱发DNA损伤。为了维持基因组的稳定性,细胞内拥有一系列完善而精确的细胞应答机制来保护基因组DNA的完整性。细胞首先通过DNA损伤检测点,然后通过一系列细胞信号转导通路,启动细胞周期阻滞,进而介导细胞修复或凋亡。大量研究表明泛素化作为一种重要的蛋白质翻译后修饰方式,参与调控了多种细胞生理过程。近期研究表明,DNA损伤导致复制应激可诱发PCNA的翻译后泛素化修饰,泛素化修饰的PCNA可能参与了多种DNA损伤应激过程,影响细胞选择不同的DNA损伤应答途径,导致细胞截然不同的转归。因此,更好地了解PCNA泛素化的作用及其影响DNA损伤应答通路可为我们更深入地了解人类细胞如何调控异常的DNA代谢过程和癌症的发生和发展机制提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号