首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
DNA损伤检验点调控的分子机制   总被引:1,自引:0,他引:1  
Guo YH  Zhu YB 《生理科学进展》2007,38(3):208-212
多种因素可以引起DNA损伤而最终导致基因产生错义突变、缺失或错误重组。为确保遗传准确性,细胞形成了复杂的细胞周期监督机制,即细胞周期检验点。其中DNA损伤检验点由许多检验点相关蛋白组成,可以识别损伤的DNA,经复杂的信号转导途径引发蛋白激酶的级联反应,减慢或阻滞细胞周期进程,从而为细胞修复损伤的DNA赢得时间。  相似文献   

2.
细胞对DNA损伤进行精确、高效修复的机制被称为DNA损伤应答机制,增殖细胞核抗原(PCNA)在DNA损伤修复机制中起着核心的作用。当细胞遭遇到DNA损伤时,PCNA通过泛素化及类泛素化的翻译后修饰对DNA修复过程进行调控。本文重点阐述DNA损伤修复的不同方式,以及泛素/类泛素化相关蛋白参与调控DNA损伤修复过程的研究进展,并分析了DNA损伤修复与机体的衰老和发育之间的密切关系,为研究DNA修复蛋白的缺失在相关疾病中的作用机制提供新思路。  相似文献   

3.
在真核生物中,基因组DNA是被高度包装成染色质的形式而存在的,这就对基因在复制、转录、修复、重组时的功能分子有效地接近DNA形成了天然屏障,执行上述生化反应需要松散染色质的结构,染色质松散是染色质动态变化即染色质重塑(chromatin remodeling)的一种形式.越来越多的证据表明,染色质重塑在DNA损伤反应中起着非常重要的作用,染色质重塑过程可以把损伤应答和修复蛋白募集到损伤位点,从而完成修复.为了进一步探讨染色质重塑和DNA损伤修复的偶联机制,采用了基于Lac抑制子和Lac操纵子的大规模染色质重塑报告系统,并借助GFP分子荧光显示方法,建立了可以直观地观察染色质松散的技术.在利用该技术证实了DNA损伤应答蛋白TIP60能够强烈诱导染色质松散的基础上,发现P53诱导基因3蛋白(PIG3)在细胞辐射DNA损伤反应中也能够一定程度地诱导染色质松弛.这些结果证明此技术是可靠的,也为阐述DNA损伤修复与染色质重塑关联机制提供了新的信息.  相似文献   

4.
林德玲  罗瑛  宋宜 《遗传》2014,(4):309-315
DNA损伤发生时,细胞会激活一系列复杂的信号网络来调控细胞周期检查,完成DNA损伤修复或当损伤超过修复能力时诱导凋亡,这一信号网络被称为DNA损伤反应(DNA damage response,DDR)。以往DDR信号网络的研究主要集中于基因转录调控和蛋白共价修饰对功能分子的稳定性和活性调控。近年来,mRNA稳定性调控和mRNA翻译调控等基因转录后调控机制在DDR中的重要作用引起研究者越来越多的关注。研究证明:多种microRNAs和RNA结合蛋白(RNA-binding proteins,RBPs)在转录后水平调控诸多重要功能蛋白的表达,在DDR信号网络中起着不可或缺的作用。文章针对DDR反应中转录后调控的研究进展以及参与其中的microRNAs和RBPs进行阐述和讨论。  相似文献   

5.
DNA损伤修复是维持细胞基因组稳定性和完整性的基础,越来越多的研究发现,E3泛素连接酶在DNA损伤修复中起着重要的作用.该文将介绍DNA损伤修复的机制、DNA损伤修复与疾病的关系、及E3泛素连接酶接头蛋白MDM2和SPOP在DNA损伤修复中的作用.重点围绕DNA损伤修复的两条通路:E3泛素连接酶接头蛋白SPOP与ATM...  相似文献   

6.
细胞代谢或细胞应激均可以引起DNA氧化损伤。DNA氧化损伤与神经退行性疾病的发生、发展密切相关。碱基切除修复在抵抗脑细胞DNA氧化损伤中起着重要的作用。就碱基切除修复在阿尔茨海默病(Alzheimer’s disease,AD)和帕金森病(Parkinson’s disease,PD)中的作用及其机制进行综述。  相似文献   

7.
核纤层蛋白是一种存在于真核细胞核膜下的中间丝纤维蛋白,是细胞核中重要的骨架蛋白,对维持细胞核的结构和功能具有重要作用。其基因突变会引起一系列的遗传性疾病,称为核纤层蛋白病。这些疾病在细胞水平表现出氧化应激和DNA损伤的特征,提示核纤层蛋白在氧化应激和DNA损伤反应中具有重要作用。本文主要就A型核纤层蛋白在氧化应激、DNA损伤反应中的作用机制进行综述。  相似文献   

8.
DNA损伤的发生与积累是造成细胞功能紊乱的根本原因,也是引起衰老与肿瘤等疾病发生的关键事件。为维持机体自身遗传物质的完整性与稳定性,生物体内拥有多种针对不同类型DNA损伤的修复方式。Sirtuin蛋白是一组NAD+依赖的、高度保守的组蛋白去乙酰化酶,可通过去乙酰化作用调节众多底物蛋白质的表达、活性与稳定性。 近来的研究显示,DNA损伤修复途径的多个关键蛋白质是Sirtuin的下游底物。Sirtuin蛋白通过调节同源重组修复、非同源末端修复、核苷酸切除修复等途径中的核心蛋白质参与修复包括双链断裂(double stranded breakes, DSBs)在内的多种DNA损伤类型,从而在维持基因组稳定性、寿命以及细胞能量代谢调节等一系列生物学作用中发挥至关重要的作用。本综述将介绍近年来Sirtuin与DNA损伤修复的研究进展。  相似文献   

9.
生精细胞在发育成熟过程中产生大量抗原性蛋白,但在睾丸内并不引起免疫反应;另一方面,一些机体系统性免疫反应可以破坏男性生育能力.这些现象的调控机理是男性生殖领域广泛关注的重要问题,对这些问题的深入认识可能为预防及治疗由炎症引起的男性生育障碍提供新线索.睾丸是精子发生的场所,而附睾是精子成熟的器官,二者均会发生影响男性生育能力的免疫反应.然而睾丸和附睾中的免疫反应存在很大区别,睾丸具有较强的免疫豁免能力,附睾比睾丸易发生免疫反应,附睾内的精子比睾丸中的生精细胞更容易被免疫系统损伤.而且离睾丸越远的附睾区域,产生的炎症反应及其对生殖的影响越大.深入研究其调控机制将有助于揭示男性生殖系统特殊的免疫环境.  相似文献   

10.
生物有机体基因组DNA经常会受到内源或外源因素的影响而导致结构发生变化,产生损伤;在长期进化过程中,有机体也相应形成了一系列应对与修复损伤DNA,并维持染色体基因组正常结构功能的机制。其中DNA损伤检验点(DNA damage checkpoint)就是在感应DNA损伤的基础上,对损伤感应信号进行转导,或引起细胞周期的暂停,从而使细胞有足够的时间对损伤DNA进行修复,或最终导致细胞发生凋亡。DNA损伤检验点信号转导途径是一个高度保守的信号感应过程,整个途径大致可以分为损伤感应、信号传递及信号效应3个组成部分。其中3-磷脂酰肌醇激酶家族类成员ATM(ataxia-telangiectasia mutated)和ATR(ataxia-telangiectasia and Rad3-related)活性的增加构成整个途径活化的第一步。它们通过激活下游的效应激酶,Chk2/Chk1,通过协同作用许多其他调控细胞周期、DNA复制、DNA损伤修复及细胞凋亡等过程的蛋白质因子来实现细胞对DNA损伤的高度协调反应。近十几年,随着此领域研究的不断深入,人们逐步揭示了DNA损伤检验点途径发生过程中,各种核心组分通过与不同调节因子、效应因子及DNA损伤修复蛋白间的复杂相互作用,以实现监测感应异常DNA结构并实施相应反应的机制;其中,检验点衔接因子(mediators)及染色质结构,尤其是核小体组蛋白的共价修饰在调控ATM/ATR活性,促进ATM/ATR与底物间的相互作用以及介导DNA损伤位点周围染色质区域上多蛋白复合物在时间与空间上的动态形成发挥着重要的作用。同时,人们也开始发现DNA损伤检验点途径与DNA损伤修复、基因组稳定性以及肿瘤发生等过程之间某些内在的联系。该反应途径在通过协调细胞针对DNA损伤做出各种反应的基础上,直接或间接地参与或调控DNA损伤修复过程,并与DNA损伤修复途径协同作用最终保证染色体基凶组结构的完整性,而检验点途径的改变,则会引起基因组不稳定的发生,包括从突变频率的提高到大范围的染色体重排,以及染色体数量的畸变。如:突变发生在肿瘤形成早期,会大大增加肿瘤发生的几率。文章将对DNA损伤检验点途径机制及其对DNA损伤修复、基因组稳定性影响的最新进展进行综述。  相似文献   

11.
多种化学、物理及生物因素可诱发细胞DNA损伤,损伤后DNA损伤位点被相关损伤感受器识别,激活相应的修复通路进行DNA修复。越来越多的证据表明DNA甲基化状态、蛋白翻译后修饰、染色质重塑、miRNA等修饰方式参与了DNA的损伤修复。文章通过不同损伤修复通路中这些修饰的特点,阐述表观遗传学改变在DNA损伤修复发展过程中的作用机制。  相似文献   

12.
5-氮胞苷对贵州小型猪淋巴细胞DNA损伤及修复的影响   总被引:1,自引:0,他引:1  
目的 研究贵州小型猪淋巴细胞对化学物或药物引起的DNA损伤及修复影响的反应。方法 用单细胞凝胶电泳技术检测比较 5 氮胞苷对PHA刺激和未刺激淋巴细胞的DNA损伤及其修复过程。结果  5 氮胞苷引起未刺激淋巴细胞明显的DNA泳动 (彗星尾 ) ,经修复孵育 2h后 ,DNA泳动与孵育前比较无显著差异 ,而 5 氮胞苷引起的刺激细胞DNA泳动经 2h修复孵育后与孵育前比较显著减少。结论  5 氮胞苷引起贵州小型猪未刺激淋巴细胞DNA损伤经 2h孵育未能修复 ,而刺激细胞的DNA损伤明显修复。  相似文献   

13.
李伟  曹诚 《生物技术通讯》2014,(1):122-124,130
非受体酪氨酸激酶c-Abl在正常生理及病理条件下具有多种生物学功能。当电离辐射、顺铂、丝裂霉素C等DNA损伤诱导剂诱导DNA损伤反应后,c-Abl可参与DNA损伤反应后的细胞周期调控、基因重组修复及细胞凋亡调控等,进而决定细胞在DNA损伤反应条件下的状态。简要介绍了c-Abl在DNA损伤反应中的作用及其进展。  相似文献   

14.
DNA损伤与肿瘤的发生发展密切相关。当DNA损伤发生时,会触发一系列的损伤应答反应以帮助细胞生存,其中即包括对自噬的诱导。ATM、P53和PARP1等多种参与DNA损伤修复的效应因子通过影响AMPK、mTOR以及一些凋亡蛋白等启动自噬。而作为一种降解途径,自噬则可通过调节DNA修复相关蛋白的水平直接影响同源重组修复、非同源末端连接修复和核苷酸切除修复等促进DNA修复,以及通过维持细胞内稳态间接促进DNA修复,从而在正常细胞的恶性转化和肿瘤耐药等发生机制中扮演重要角色。此外,DNA修复失败时,自噬也可作为一种肿瘤细胞的程序性死亡方式。因此研究自噬通过调节DNA损伤修复而对肿瘤的影响对于理解肿瘤发生的机制和提供治疗思路都有重要意义。  相似文献   

15.
刘玲  周平坤 《生命科学》2014,(11):1187-1193
组蛋白翻译后修饰是细胞DNA损伤早期应答反应的重要内涵,一方面是松弛、开放染色质结构的必要分子调节事件,以便DNA损伤响应蛋白能接近DNA损伤位点;另一方面直接参与DNA损伤修复蛋白招募过程的调控。综述了在DNA损伤信号激发下,发生的组蛋白主要修饰类型,异组蛋白H2AX、H2A.Z在DNA损伤部位与组蛋白置换,及其对DNA损伤响应蛋白招募的调节作用和机制。  相似文献   

16.
肾小管上皮细胞在肾损伤局部微环境中的免疫调节作用   总被引:2,自引:0,他引:2  
诸多原因可造成肾脏损伤,而肾小管损伤和肾间质纤维化是各种病因所致慢性肾脏病发展至终末期肾病的共同途径.炎症免疫反应是肾损伤的主要病理生理机制,并受局部微环境的精细调控.在此基础上,经历了一个损伤-修复平衡或失衡过程,从而决定着肾组织损伤与修复的走向.肾小管上皮细胞(renal tubular epithelial cell,RTEC)是兼有免疫调节作用且生物学功能十分活跃的细胞,其在肾损伤的局部微环境形成及调控中发挥重要作用.在肾损伤初始及随后的损伤修复中,RTEC不仅合成分泌各种黏附分子、趋化因子及炎症介质,招募单核/巨噬细胞、淋巴细胞等炎症细胞浸润;亦可转分化为免疫细胞或成纤维细胞,启动、参与并调控局部炎症免疫反应,行使免疫防御和损伤修复作用,在损伤因素持续存在且组织修复失衡状况下,积极参与免疫损伤以及肾间质纤维化的演变过程.因此从这个意义上说,RTEC可能是决定肾损伤趋于修复或肾纤维化最终结局的关键因素.  相似文献   

17.
物理或化学等多种因素均可以引起DNA损伤。为维持机体基因组的稳定性,机体形成了精确完整的机制来修复损伤的/DNA。SUMO(smallubiquitin-relatedmodifier,SUMO)化修饰与其他蛋白翻译后修饰一样,具有多种生物学功能。近年来的研究表明,其在DNA损伤修复中也具有非常重要的作用。该文就DNA损伤修复、SUMO,96修饰系统及其二者关系的最新研究进展作了较为全面的介绍和总结。  相似文献   

18.
早幼粒白血病蛋白核体(promyelocytic leukaemia nuclear bodies,PML-NBs)是哺乳动物细胞中普遍存在的一种动态的细胞核亚结构,参与DNA损伤与修复、细胞衰老与凋亡、基因表达调控以及肿瘤发生与抑制等多种重要的细胞活动。研究表明,PML-NBs也是多种病毒入侵细胞的作用靶点。PML-NBs通过介导细胞固有免疫反应或者作为细胞干扰素信号通路元件参与宿主细胞的抗病毒防御活动。该文以几种DNA和RNA病毒为例,综述了在病毒感染过程中PML-NBs与病毒的相互作用以及这些相互作用的功能意义,从而揭示PML-NBs在抵御病毒感染和免疫反应中的重要作用,并提出运用病毒单分子实时示踪(Single-virus Tracking)这一新技术深入研究PML-NBs在病毒感染中作用的可行性。  相似文献   

19.
蛋白质的翻译后修饰在很大程度上决定了蛋白质的活性、细胞定位、稳定性及蛋白质之间的相互作用.而在DNA损伤修复过程中,通过调控不同修复蛋白的翻译后修饰来影响他们的活性及细胞定位,进而导致DNA损伤修复途径的不同和修复结果的差异.新近研究表明,蛋白质的SUMO化修饰在DNA损伤修复和基因组稳定性的维护方面发挥重要作用.本文将对SUMO化修饰对DNA损伤修复的调控的最新研究进展做一综述.  相似文献   

20.
细胞时刻面临着细胞内部因素或周围环境因素对基因组DNA的攻击,从而导致DNA损伤。DNA损伤可触发生物的DNA损伤修复系统来管理和修复各种DNA损伤,以维持基因组稳定性。当细胞受到损伤后,Rad9在细胞周期检测点中发挥作用,阻滞细胞周期的运行,使细胞有时间修复损伤DNA,来维持基因组的稳定。本文重点介绍Rad9在DNA损伤修复及细胞周期检测点调控中的作用及研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号