首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 276 毫秒
1.
The lack of a few conserved enzymes in the classical mevalonate pathway and the widespread existence of isopentenyl phosphate kinase suggest the presence of a partly modified mevalonate pathway in most archaea and in some bacteria. In the pathway, (R)-mevalonate 5-phosphate is thought to be metabolized to isopentenyl diphosphate via isopentenyl phosphate. The long anticipated enzyme that catalyzes the reaction from (R)-mevalonate 5-phosphate to isopentenyl phosphate was recently identified in a Cloroflexi bacterium, Roseiflexus castenholzii, and in a halophilic archaeon, Haloferax volcanii. However, our trial to convert the intermediates of the classical and modified mevalonate pathways into isopentenyl diphosphate using cell-free extract from a thermophilic archaeon Thermoplasma acidophilum implied that the branch point intermediate of these known pathways, i.e. (R)-mevalonate 5-phosphate, is unlikely to be the precursor of isoprenoid. Through the process of characterizing the recombinant homologs of mevalonate pathway-related enzymes from the archaeon, a distant homolog of diphosphomevalonate decarboxylase was found to catalyze the phosphorylation of (R)-mevalonate to yield (R)-mevalonate 3-phosphate. The product could be converted into isopentenyl phosphate, probably through (R)-mevalonate 3,5-bisphosphate, by the action of unidentified T. acidophilum enzymes fractionated by anion-exchange chromatography. These findings demonstrate the presence of a third alternative “Thermoplasma-type” mevalonate pathway, which involves (R)-mevalonate 3-phosphotransferase and probably both (R)-mevalonate 3-phosphate 5-phosphotransferase and (R)-mevalonate 3,5-bisphosphate decarboxylase, in addition to isopentenyl phosphate kinase.  相似文献   

2.
Branched C5 alcohols are promising biofuels with favorable combustion properties. A mevalonate (MVA)-based isoprenoid biosynthetic pathway for C5 alcohols was constructed in Escherichia coli using genes from several organisms, and the pathway was optimized to achieve over 50% theoretical yield. Although the MVA pathway is energetically less efficient than the native methylerythritol 4-phosphate (MEP) pathway, implementing the MVA pathway in bacterial hosts such as E. coli is advantageous due to its lack of endogenous regulation. The MVA and MEP pathways intersect at isopentenyl diphosphate (IPP), the direct precursor to isoprenoid-derived C5 alcohols and initial precursor to longer chain terpenes, which makes independent regulation of the pathways difficult. In pursuit of the complete “decoupling” of the MVA pathway from native cellular regulation, we designed novel IPP-bypass MVA pathways for C5 alcohol production by utilizing promiscuous activities of two enzymes, phosphomevalonate decarboxylase (PMD) and an E. coli-endogenous phosphatase (AphA). These bypass pathways have reduced energetic requirements, are further decoupled from intrinsic regulation, and are free from IPP-related toxicity. In addition to these benefits, we demonstrate that reduced aeration rate has less impact on the bypass pathway than the original MVA pathway. Finally, we showed that performance of the bypass pathway was primarily determined by the activity of PMD. We designed PMD mutants with improved activity and demonstrated titer increases in the mutant strains. These modified pathways would be a good platform for industrial production of isopentenol and related chemicals such as isoprene.  相似文献   

3.
Mevalonate 3,5-bisphosphate decarboxylase is involved in the recently discovered Thermoplasma-type mevalonate pathway. The enzyme catalyzes the elimination of the 3-phosphate group from mevalonate 3,5-bisphosphate as well as concomitant decarboxylation of the substrate. This entire reaction of the enzyme resembles the latter half-reactions of its homologs, diphosphomevalonate decarboxylase and phosphomevalonate decarboxylase, which also catalyze ATP-dependent phosphorylation of the 3-hydroxyl group of their substrates. However, the crystal structure of mevalonate 3,5-bisphosphate decarboxylase and the structural reasons of the difference between reactions catalyzed by the enzyme and its homologs are unknown. In this study, we determined the X-ray crystal structure of mevalonate 3,5-bisphosphate decarboxylase from Picrophilus torridus, a thermoacidophilic archaeon of the order Thermoplasmatales. Structural and mutational analysis demonstrated the importance of a conserved aspartate residue for enzyme activity. In addition, although crystallization was performed in the absence of substrate or ligands, residual electron density having the shape of a fatty acid was observed at a position overlapping the ATP-binding site of the homologous enzyme, diphosphomevalonate decarboxylase. This finding is in agreement with the expected evolutionary route from phosphomevalonate decarboxylase (ATP-dependent) to mevalonate 3,5-bisphosphate decarboxylase (ATP-independent) through the loss of kinase activity. We found that the binding of geranylgeranyl diphosphate, an intermediate of the archeal isoprenoid biosynthesis pathway, evoked significant activation of mevalonate 3,5-bisphosphate decarboxylase, and several mutations at the putative geranylgeranyl diphosphate–binding site impaired this activation, suggesting the physiological importance of ligand binding as well as a possible novel regulatory system employed by the Thermoplasma-type mevalonate pathway.  相似文献   

4.
Archaea have been shown to produce isoprenoids from mevalonate; however, genome analysis has failed to identify several genes in the mevalonate pathway on the basis of sequence similarity. A predicted archaeal kinase, coded for by the MJ0044 gene, was associated with other mevalonate pathway genes in the archaea and was predicted to be the "missing" phosphomevalonate kinase. The MJ0044-derived protein was tested for phosphomevalonate kinase activity and was found not to catalyze this reaction. The MJ0044 gene product was found to phosphorylate isopentenyl phosphate, generating isopentenyl diphosphate. Unlike other known kinases associated with isoprene biosynthesis, Methanocaldococcus jannaschii isopentenyl phosphate kinase is predicted to be a member of the aspartokinase superfamily.  相似文献   

5.
Seedlings from the white mustard, Sinapis alba, grown under continuous far-red light exhibit enhanced plastid enzyme activities when compared with dark-grown seedlings (for review, see Mohr 1981). These activities are even more pronounced upon illumination with white light during the etioplast/chloroplast transformation. Etioplasts and etiochloroplasts from the cotyledons of such seedlings show high prenyl-lipid-synthesizing activities when [1-14C]isopentenyl diphosphate is used as the precursor. They lack, however, any enzymatic activities for the formation of isopentenyl diphosphate via the mevalonate pathway, i.e. hydroxymethylglutaryl-CoA reductase, mevalonate kinase, phosphomevalonate kinase and diphosphomevalonate decarboxylase, which are present and easily detectable within the endoplasmic reticulum and cytoplasm. These results corroborate the view that the cytoplasm of the plant cell is the only site of isopentenyl-diphosphate formation via the mevalonate pathway.  相似文献   

6.
Klaus Kreuz  Hans Kleinig 《Planta》1981,153(6):578-281
Purified spinach chloroplast and daffodil chromoplast preparations do not use mevalonate, phosphomevalonate, and diphosphomevalonate for the synthesis of isopentenyl diphosphate. Isopentenyl diphosphate, on the other hand, is incorporated into plastidal polyprenoids in large amounts. In the presence of a cytoplasmic supernatant, however, mevalonate and the phosphomevalonates were incorporated into the plastidal polyprenoids in equally large amounts, which demonstrates that the enzymes mevalonate kinase (EC 2.7.1.36), phosphomevalonate kinase (EC 2.7.4.2), and diphosphomevalonate decarboxylase (EC 4.1.1.33) are soluble cytoplasmic enzymes and that they apparently do not occur as isoenzymes within the plastids. The concept is developed that isopentenyl diphosphate is a central intermediate in plant polyprenoid formation which is channeled into several compartment for different biosynthetic pathways.Abbreviation IPP isopentenyl diphosphate - ChlGG Chlorophyll a esterified with geranylgeraniol - HPLC high pressure liquid chromatography  相似文献   

7.
Isopentenol (or isoprenol, 3-methyl-3-buten-1-ol) is a drop-in biofuel and a precursor for commodity chemicals such as isoprene. Biological production of isopentenol via the mevalonate pathway has been optimized extensively in Escherichia coli, yielding 70% of its theoretical maximum. However, high ATP requirements and isopentenyl diphosphate (IPP) toxicity pose immediate challenges for engineering bacterial strains to overproduce commodities utilizing IPP as an intermediate. To overcome these limitations, we developed an “IPP-bypass” isopentenol pathway using the promiscuous activity of a mevalonate diphosphate decarboxylase (PMD) and demonstrated improved performance under aeration-limited conditions. However, relatively low activity of PMD toward the non-native substrate (mevalonate monophosphate, MVAP) was shown to limit flux through this new pathway. By inhibiting all IPP production from the endogenous non-mevalonate pathway, we developed a high-throughput screening platform that correlated promiscuous PMD activity toward MVAP with cellular growth. Successful identification of mutants that altered PMD activity demonstrated the sensitivity and specificity of the screening platform. Strains with evolved PMD mutants and the novel IPP-bypass pathway increased titers up to 2.4-fold. Further enzymatic characterization of the evolved PMD variants suggested that higher isopentenol titers could be achieved either by altering residues directly interacting with substrate and cofactor or by altering residues on nearby α-helices. These altered residues could facilitate the production of isopentenol by tuning either kcat or Ki of PMD for the non-native substrate. The synergistic modification made on PMD for the IPP-bypass mevalonate pathway is expected to significantly facilitate the industrial scale production of isopentenol.  相似文献   

8.
Mevalonate diphosphate decarboxylase (MVD) is an ATP-dependent enzyme that catalyzes the phosphorylation/decarboxylation of (R)-mevalonate-5-diphosphate to isopentenyl pyrophosphate in the mevalonate (MVA) pathway. MVD is a key enzyme in engineered metabolic pathways for bioproduction of isobutene, since it catalyzes the conversion of 3-hydroxyisovalerate (3-HIV) to isobutene, an important platform chemical. The putative homologue from Picrophilus torridus has been identified as a highly efficient variant in a number of patents, but its detailed characterization has not been reported. In this study, we have successfully purified and characterized the putative MVD from P. torridus. We discovered that it is not a decarboxylase per se but an ATP-dependent enzyme, mevalonate-3-kinase (M3K), which catalyzes the phosphorylation of MVA to mevalonate-3-phosphate. The enzyme''s potential in isobutene formation is due to the conversion of 3-HIV to an unstable 3-phosphate intermediate that undergoes consequent spontaneous decarboxylation to form isobutene. Isobutene production rates were as high as 507 pmol min−1 g cells−1 using Escherichia coli cells expressing the enzyme and 2,880 pmol min−1 mg protein−1 with the purified histidine-tagged enzyme, significantly higher than reported previously. M3K is a key enzyme of the novel MVA pathway discovered very recently in Thermoplasma acidophilum. We suggest that P. torridus metabolizes MVA by the same pathway.  相似文献   

9.
In animals, cholesterol is made from 5‐carbon building blocks produced by the mevalonate pathway. Drugs that inhibit the mevalonate pathway such as atorvastatin (lipitor) have led to successful treatments for high cholesterol in humans. Another potential target for the inhibition of cholesterol synthesis is mevalonate diphosphate decarboxylase (MDD), which catalyzes the phosphorylation of (R)‐mevalonate diphosphate, followed by decarboxylation to yield isopentenyl pyrophosphate. We recently discovered an MDD homolog, mevalonate‐3‐kinase (M3K) from Thermoplasma acidophilum, which catalyzes the identical phosphorylation of (R)‐mevalonate, but without concomitant decarboxylation. Thus, M3K catalyzes half the reaction of the decarboxylase, allowing us to separate features of the active site that are required for decarboxylation from features required for phosphorylation. Here we determine the crystal structure of M3K in the apo form, and with bound substrates, and compare it to MDD structures. Structural and mutagenic analysis reveals modifications that allow M3K to bind mevalonate rather than mevalonate diphosphate. Comparison to homologous MDD structures show that both enzymes employ analogous Arg or Lys residues to catalyze phosphate transfer. However, an invariant active site Asp/Lys pair of MDD previously thought to play a role in phosphorylation is missing in M3K with no functional replacement. Thus, we suggest that the invariant Asp/Lys pair in MDD may be critical for decarboxylation rather than phosphorylation.  相似文献   

10.
Purified spinach chloroplasts incorporate [1-14C]isopentenyl diphosphate into prenyl lipids in high yields. The immediate biosynthetic precursors of isopentenyl diphosphate (hydroxymethylglutaryl-CoA, mevalonate, mevalonate-5-phosphate, mevalonate-5-diphosphate), on the other hand, are not accepted as substrates and the corresponding enzymes hydroxymethylglutaryl-CoA reductase, mevalonate kinase, phosphomevalonate kinase, and diphosphomevalonate decarboxylase are not present in the organelles. These enzymes can only be detected in a membrane-bound form at the endoplasmic reticulum (hydroxymethylglutaryl-CoA reductase) and as soluble activities in the cytoplasm. The concept is developed that isopentenyl diphosphate is formed in the cytoplasm as a 'central intermediate' and is distributed then to other cellular compartments (endoplasmic reticulum, plastids, mitochondria) for further biosynthetic utilization.  相似文献   

11.
The mevalonate pathway accounts for conversion of acetyl-CoA to isopentenyl 5-diphosphate, the versatile precursor of polyisoprenoid metabolites and natural products. The pathway functions in most eukaryotes, archaea, and some eubacteria. Only recently has much of the functional and structural basis for this metabolism been reported. The biosynthetic acetoacetyl-CoA thiolase and HMG-CoA synthase reactions rely on key amino acids that are different but are situated in active sites that are similar throughout the family of initial condensation enzymes. Both bacterial and animal HMG-CoA reductases have been extensively studied and the contrasts between these proteins and their interactions with statin inhibitors defined. The conversion of mevalonic acid to isopentenyl 5-diphosphate involves three ATP-dependent phosphorylation reactions. While bacterial enzymes responsible for these three reactions share a common protein fold, animal enzymes differ in this respect as the recently reported structure of human phosphomevalonate kinase demonstrates. There are significant contrasts between observations on metabolite inhibition of mevalonate phosphorylation in bacteria and animals. The structural basis for these contrasts has also recently been reported. Alternatives to the phosphomevalonate kinase and mevalonate diphosphate decarboxylase reactions may exist in archaea. Thus, new details regarding isopentenyl diphosphate synthesis from acetyl-CoA continue to emerge.  相似文献   

12.
The mevalonate pathway and the glyceraldehyde 3-phosphate (GAP)-pyruvate pathway are alternative routes for the biosynthesis of the central isoprenoid precursor, isopentenyl diphosphate. Genomic analysis revealed that the staphylococci, streptococci, and enterococci possess genes predicted to encode all of the enzymes of the mevalonate pathway and not the GAP-pyruvate pathway, unlike Bacillus subtilis and most gram-negative bacteria studied, which possess only components of the latter pathway. Phylogenetic and comparative genome analyses suggest that the genes for mevalonate biosynthesis in gram-positive cocci, which are highly divergent from those of mammals, were horizontally transferred from a primitive eukaryotic cell. Enterococci uniquely encode a bifunctional protein predicted to possess both 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase and acetyl-CoA acetyltransferase activities. Genetic disruption experiments have shown that five genes encoding proteins involved in this pathway (HMG-CoA synthase, HMG-CoA reductase, mevalonate kinase, phosphomevalonate kinase, and mevalonate diphosphate decarboxylase) are essential for the in vitro growth of Streptococcus pneumoniae under standard conditions. Allelic replacement of the HMG-CoA synthase gene rendered the organism auxotrophic for mevalonate and severely attenuated in a murine respiratory tract infection model. The mevalonate pathway thus represents a potential antibacterial target in the low-G+C gram-positive cocci.  相似文献   

13.
The polyisoprenoid compound undecaprenyl phosphate is required for biosynthesis of cell wall peptidoglycans in Gram-positive bacteria, including pathogenic Enterococcus, Streptococcus, and Staphylococcus spp. In these organisms, the mevalonate pathway is used to produce the precursor isoprenoid, isopentenyl 5-diphosphate. Mevalonate diphosphate decarboxylase (MDD) catalyzes formation of isopentenyl 5-diphosphate in an ATP-dependent irreversible reaction and is therefore an attractive target for inhibitor development that could lead to new antimicrobial agents. To facilitate exploration of this possibility, we report the crystal structure of Staphylococcus epidermidis MDD (1.85 Å resolution) and, to the best of our knowledge, the first structures of liganded MDD. These structures include MDD bound to the mevalonate 5-diphosphate analogs diphosphoglycolyl proline (2.05 Å resolution) and 6-fluoromevalonate diphosphate (FMVAPP; 2.2 Å resolution). Comparison of these structures provides a physical basis for the significant differences in Ki values observed for these inhibitors. Inspection of enzyme/inhibitor structures identified the side chain of invariant Ser192 as making potential contributions to catalysis. Significantly, Ser → Ala substitution of this side chain decreases kcat by ∼103-fold, even though binding interactions between FMVAPP and this mutant are similar to those observed with wild type MDD, as judged by the 2.1 Å cocrystal structure of S192A with FMVAPP. Comparison of microbial MDD structures with those of mammalian counterparts reveals potential targets at the active site periphery that may be exploited to selectively target the microbial enzymes. These studies provide a structural basis for previous observations regarding the MDD mechanism and inform future work toward rational inhibitor design.  相似文献   

14.
Plant isoprenoids are derived from two biosynthetic pathways, the cytoplasmic mevalonate (MVA) and the plastidial methylerythritol phosphate (MEP) pathway. In this study their respective contributions toward formation of dolichols in Coluria geoides hairy root culture were estimated using in vivo labeling with (13)C-labeled glucose as a general precursor. NMR and mass spectrometry showed that both the MVA and MEP pathways were the sources of isopentenyl diphosphate incorporated into polyisoprenoid chains. The involvement of the MEP pathway was found to be substantial at the initiation stage of dolichol chain synthesis, but it was virtually nil at the terminal steps; statistically, 6-8 isoprene units within the dolichol molecule (i.e. 40-50% of the total) were derived from the MEP pathway. These results were further verified by incorporation of [5-(2)H]mevalonate or [5,5-(2)H(2)]deoxyxylulose into dolichols as well as by the observed decreased accumulation of dolichols upon treatment with mevinolin or fosmidomycin, selective inhibitors of either pathway. The presented data indicate that the synthesis of dolichols in C. geoides roots involves a continuous exchange of intermediates between the MVA and MEP pathways. According to our model, oligoprenyl diphosphate chains of a length not exceeding 13 isoprene units are synthesized in plastids from isopentenyl diphosphate derived from both the MEP and MVA pathways, and then are completed in the cytoplasm with several units derived solely from the MVA pathway. This study also illustrates an innovative application of mass spectrometry for qualitative and quantitative evaluation of the contribution of individual metabolic pathways to the biosynthesis of natural products.  相似文献   

15.
A gene cluster encoding enzymes responsible for the mevalonate pathway was isolated from Streptomyces griseolosporeus strain MF730-N6, a terpenoid-antibiotic terpentecin producer, by searching a flanking region of the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase gene, which had been previously isolated by complementation. By DNA sequencing of an 8.9-kb BamHI fragment, 7 genes encoding geranylgeranyl diphosphate synthase (GGDPS), mevalonate kinase (MK), mevalonate diphosphate decarboxylase (MDPD), phosphomevalonate kinase (PMK), isopentenyl diphosphate (IPP) isomerase, HMG-CoA reductase, and HMG-CoA synthase were suggested to exist in that order. Heterologous expression of these genes in E. coli and Streptomyces lividans, both of which have only the nonmevalonate pathways, suggested that the genes for the mevalonate pathway were included in the cloned DNA fragment. The GGDPS, MK, MDPD, PMK, IPP isomerase, and HMG-CoA synthase were expressed in E. coli. Among them, the recombinant GGDPS, MK, and IPP isomerase were confirmed to have the expected activities. This is the first report, to the best of our knowledge, about eubacterial MK with direct evidence.  相似文献   

16.
6-Fluoromevalonate blocks the incorporation of mevalonic acid, but not that of isopentenyl pyrophosphate, into non-saponifiable lipids in a rat liver multienzyme system. With 3H-labelled 6-fluoromevalonate, it was found that 6-fluoromevalonate is converted to its phospho and pyrophospho derivatives in this system. The kinetics of the two kinases were studied. 6-Fluoromevalonate 5-pyrophosphate is a potent competitive inhibitor of pyrophosphomevalonate decarboxylase (Ki 37 nM). In the multienzyme assay for cholesterol biosynthesis, there is accumulation of mevalonate 5-phosphate and mevalonate 5-pyrophosphate in the presence of 5 microM-6-fluoromevalonate, and 6-fluoromevalonate 5-pyrophosphate is more effective than 6-fluoromevalonate in inhibiting cholesterol biosynthesis. We suggest therefore that 6-fluoromevalonate blocks cholesterol biosynthesis at the level of pyrophosphomevalonate decarboxylase after being pyrophosphorylated.  相似文献   

17.
T Bergs  D Guyonnet    F Karst 《Journal of bacteriology》1997,179(15):4664-4670
The mevalonate diphosphate decarboxylase is an enzyme which converts mevalonate diphosphate to isopentenyl diphosphate, the building block of isoprenoids. We used the Saccharomyces cerevisiae temperature-sensitive mutant defective for mevalonate diphosphate decarboxylase previously described (C. Chambon, V. Ladeveve, M. Servouse, L. Blanchard, C. Javelot, B. Vladescu, and F. Karst, Lipids 26:633-636, 1991) to characterize the mutated allele. We showed that a single change in a conserved amino acid accounts for the temperature-sensitive phenotype of the mutant. Complementation experiments were done both in the erg19-mutated background and in a strain in which the ERG19 gene, which was shown to be an essential gene for yeast, was disrupted. Epitope tagging of the wild-type mevalonate diphosphate decarboxylase allowed us to isolate the enzyme in an active form by a versatile one-step immunoprecipitation procedure. Furthermore, during the course of this study, we observed that a high level of expression of the wild-type ERG19 gene led to a lower sterol steady-state accumulation compared to that of a wild-type strain, suggesting that this enzyme may be a key enzyme in mevalonate pathway regulation.  相似文献   

18.
At least three different subcellular compartments, including peroxisomes, are involved in cholesterol synthesis. The peroxisomal targeting signals for phosphomevalonate kinase and isopentenyl diphosphate isomerase have been identified. In the current study we identify the peroxisomal targeting signals required for four other enzymes of the cholesterol biosynthetic pathway: acetoacetyl-CoA (AA-CoA) thiolase, 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) synthase, mevalonate diphosphate decarboxylase (MPPD), and farnesyl diphosphate (FPP) synthase. Data are presented that demonstrate that mitochondrial AA-CoA thiolase contains both a mitochondrial targeting signal at the amino terminus and a peroxisomal targeting signal (PTS-1) at the carboxy terminus. We also analyze a new variation of PTS-2 sequences required to target HMG-CoA synthase and MPPD to peroxisomes. In addition, we show that FPP synthase import into peroxisomes is dependent on the PTS-2 receptor and identify at the amino terminus of the protein a 20-amino acid region that is required for the peroxisomal localization of the enzyme.These data provide further support for the conclusion that peroxisomes play a critical role in cholesterol biosynthesis.  相似文献   

19.
The identification of a novel pathway for isopentenyl diphosphate synthesis by Rohmer, Arigoni and colleagues in the early 1990's has led to a reappraisal of terpenoid biosynthesis in many organisms. It is now apparent that in plants there are two biosynthetic routes to isopentenyl diphosphate-the classical mevalonate pathway in the cytosol and the deoxyxylulose phosphate pathway in plastids. Sesquiterpenoids and sterols are predominantly synthesized in the cytosol by the mevalonate pathway whereas monoterpenoids, diterpenoids, the phytol side-chain of chlorophyll, carotenoids, and the nonaprenyl side-chain of plastoquinone-9 are synthesized within plastids by the deoxyxylulose phosphate pathway. Our assumptions that the early stages of gibberellin biosynthesis are plastid-localized has led to several attempts to demonstrate that the deoxyxylulose phosphate pathway is the biosynthetic route to gibberellins. Although definitive evidence is still not available there is a growing body of evidence, mostly from transgenic plants and from the use of the inhibitor, fosmidomycin, that gibberellins are synthesized from deoxyxylulose phosphate-derived isopentenyl diphosphate. However, there is evidence that a small amount of cross-talk between the two pathways may occur, implying that the pathways are not totally autonomous. Implications for the regulation of the early stages of gibberellin biosynthesis are discussed.  相似文献   

20.
A simple, optical density-based assay for inhibitors of the mevalonate-dependent pathway for isoprenoid biosynthesis was developed. The assay uses pathway-sensitized Staphylococcus aureus strains and is fully compatible with high-density screening in a 1536-well format. S. aureus strains were constructed in which genes required for mevalonate-dependent isopentenyl pyrophosphate (IPP) synthesis were regulated by an isopropyl-β-D-thiogalactopyranoside (IPTG)-inducible promoter. Inhibitors of the target enzymes displayed greater antibacterial potency in media containing low concentrations of IPTG, and therefore less induction of mevalonate pathway genes, than in media with high IPTG conditions. This differential growth phenotype was exploited to bias the cell-based screening hits toward specific inhibitors of mevalonate-dependent IPP biosynthesis. Screens were run against strains engineered for regulation of the enzymes HMG-CoA synthase (MvaS) and mevalonate kinase (mvaK1), mevalonate diphosphate decarboxylase (mvaD), and phosphomevalonate kinase (mvaK2). The latter three enzymes are regulated as an operon. These assays resulted in the discovery of potent antibacterial hits that were progressed to an active hit-to-lead program. The example presented here demonstrates that a cell sensitization strategy can be successfully applied to a 1.3-million compound high-throughput screen in a high-density 1536-well format.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号