共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
自身多聚化的SATB1(special AT-rich sequences binding protein 1)围绕异染色质形成笼状结构分布在细胞核中,SATB1不仅结合染色质DNA的核基质结合区(matrix attachment regions,MARs),也结合核基质,能够使DNA锚定在核基质并形成袢环状结构(loop)。SATB1的磷酸化、乙酰化和小泛素化样修饰可调节其DNA结合能力和细胞核内亚结构的定位;SATB1与多种蛋白质相互作用,能够募集染色质重塑复合物和组蛋白修饰酶,实现对其靶基因表达的时空特异性调控。SATB1在调节细胞分化、细胞凋亡、肿瘤生长与转移和X染色体失活等方面起到重要作用,并有可能成为肿瘤转移的治疗靶点。 相似文献
10.
11.
12.
13.
The genetic and phenotypic responses of Streptococcus mutans, an organism that is strongly associated with the development of dental caries, to changes in carbohydrate availability were investigated. S. mutans UA159 or a derivative of UA159 lacking ManL, which is the EIIAB component (EIIABMan) of a glucose/mannose permease of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) and a dominant effector of catabolite repression, was grown in continuous culture to steady state under conditions of excess (100 mM) or limiting (10 mM) glucose. Microarrays using RNA from S. mutans UA159 revealed that 174 genes were differentially expressed in response to changes in carbohydrate availability (P < 0.001). Glucose-limited cells possessed higher PTS activity, could acidify the environment more rapidly and to a greater extent, and produced more ManL protein than cultures grown with excess glucose. Loss of ManL adversely affected carbohydrate transport and acid tolerance. Comparison of the histidine protein (HPr) in S. mutans UA159 and the manL deletion strain indicated that the differences in the behaviors of the strains were not due to major differences in HPr pools or HPr phosphorylation status. Therefore, carbohydrate availability alone can dramatically influence the expression of physiologic and biochemical pathways that contribute directly to the virulence of S. mutans, and ManL has a profound influence on this behavior. 相似文献
14.
《PloS one》2008,3(12)
The spaceflight environment is relevant to conditions encountered by pathogens during the course of infection and induces novel changes in microbial pathogenesis not observed using conventional methods. It is unclear how microbial cells sense spaceflight-associated changes to their growth environment and orchestrate corresponding changes in molecular and physiological phenotypes relevant to the infection process. Here we report that spaceflight-induced increases in Salmonella virulence are regulated by media ion composition, and that phosphate ion is sufficient to alter related pathogenesis responses in a spaceflight analogue model. Using whole genome microarray and proteomic analyses from two independent Space Shuttle missions, we identified evolutionarily conserved molecular pathways in Salmonella that respond to spaceflight under all media compositions tested. Identification of conserved regulatory paradigms opens new avenues to control microbial responses during the infection process and holds promise to provide an improved understanding of human health and disease on Earth. 相似文献
15.
16.
17.
18.
19.