首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Alcohol dehydrogenase activities were examined in cell-free extracts of 10 representative wine yeast strains having various productivities of higher alcohols (fusel oil). The amount of fusel alcohols (n-propanol, isobutanol, active pentanol, and isopentanol) produced by the different yeasts and the specific alcohol dehydrogenase activities with the corresponding alcohols as substrates were found to be significantly related. No such relationship was found for ethanol. The amounts of higher alcohols formed during vinification could be predicted from the specific activities of the alcohol dehydrogenases with high accuracy. The results suggest a close relationship between the control of the activities of alcohol dehydrogenase and the formation of fusel oil alcohols. Also, new procedures for the prediction of higher alcohol formation during alcoholic beverage fermentation are suggested.  相似文献   

2.
葡萄酒相关酵母的香气形成及香气特征   总被引:1,自引:0,他引:1  
一系列相关微生物的代谢及相互作用贯穿在葡萄酒的酿造过程中,其中各种酵母菌的代谢产物是影响葡萄酒感官特征的关键,不同菌种代谢产生不同的挥发性物质,造成对葡萄酒香气的最直接影响。介绍了酿酒酵母以及非酿酒酵母的代谢特征与差别,由此所引起的葡萄酒气味的不同表现,以及发酵过程中不同菌种的相互作用,总结了近些年来对非酿酒酵母酿酒特性的研究与利用。目前已证实非酿酒酵母的一些代谢特征对葡萄酒香气和香气结构具有一些积极的作用,并且酿酒酵母和有些非酿酒酵母的结合使用对改善葡萄酒感官也具有良好的作用与发展前景。  相似文献   

3.
葡萄酒相关酵母的香气形成及香气特征   总被引:3,自引:0,他引:3  
一系列相关微生物的代谢及相互作用贯穿在葡萄酒的酿造过程中,其中各种酵母菌的代谢产物是影响葡萄酒感官特征的关键,不同菌种代谢产生不同的挥发性物质,造成对葡萄酒香气的最直接影响。介绍了酿酒酵母以及非酿酒酵母的代谢特征与差别,由此所引起的葡萄酒气味的不同表现,以及发酵过程中不同菌种的相互作用,总结了近些年来对非酿酒酵母酿酒特性的研究与利用。目前已证实非酿酒酵母的一些代谢特征对葡萄酒香气和香气结构具有一些积极的作用,并且酿酒酵母和有些非酿酒酵母的结合使用对改善葡萄酒感官也具有良好的作用与发展前景。  相似文献   

4.
5.
6.
To optimize the conversion of carbohydrates to ethanol, strains of several Saccharomyces species were examined for the ability to grow and ferment in a range of sucrose and ethanol concentrations. A total of 632 wine yeasts, most of them isolated from wineries in Andalusia and Extremadura, southwestern Spain, were subjected to screening and selection. Growth and fermentative capacity in different ethanol and sucrose concentrations varied from one strain to another. There was no correlation between growth and fermentative capacity. The best 35 strains grew in 15% ethanol and fermented in 18% ethanol. Ethanol accumulated, although at a reduced rate, after the cells stopped growing. Most yeast strains were highly fermentative in 50% sucrose. Some of them effectively utilized the carbohydrates of the culture, yielding final ethanol concentrations of > 14%. Of the 35 selected strains, 16 were promising for genetic analysis and breeding because of their capacity to sporulate. These strains were homothallic, and their spores were viable. The meiotic products analyzed so far were also homothallic.  相似文献   

7.
Occurrence and Growth of Killer Yeasts during Wine Fermentation   总被引:3,自引:2,他引:1       下载免费PDF全文
Sixteen wine fermentations were examined for the presence of killer yeasts. Killer property and sensitivity to killer action were found in isolates of Saccharomyces cerevisiae but not in isolates of Kloeckera, Candida, Hansenula, and Torulaspora spp. Several killer and killer-sensitive strains of S. cerevisiae were differentiated by colony morphology, and this property was used to monitor their growth kinetics in mixed cultures in grape juice. Killer-sensitive strains died off within 24 to 48 h during mixed-strain fermentation. Killer action was demonstrated at pH 3.0 and pH 3.5 and over the range of 15 to 25°C but depended on the proportion of killer to killer-sensitive cells at the commencement of fermentation. The dominance of killer strains in mixed-strain fermentations was reflected in the production of ethanol, acetic acid, and glycerol.  相似文献   

8.
The effect of the main environmental factors governing wine fermentation on the fitness of industrial yeast strains has barely received attention. In this study, we used the concept of fitness advantage to measure how increasing nitrogen concentrations (0 to 200 mg N/liter), ethanol (0 to 20%), and temperature (4 to 45°C) affects competition among four commercial wine yeast strains (PDM, ARM, RVA, and TTA). We used a mathematical approach to model the hypothetical time needed for the control strain (PDM) to out-compete the other three strains in a theoretical mixed population. The theoretical values obtained were subsequently verified by competitive mixed fermentations in both synthetic and natural musts, which showed a good fit between the theoretical and experimental data. Specifically, the data show that the increase in nitrogen concentration and temperature values improved the fitness advantage of the PDM strain, whereas the presence of ethanol significantly reduced its competitiveness. However, the RVA strain proved to be the most competitive yeast for the three enological parameters assayed. The study of the fitness of these industrial strains is of paramount interest for the wine industry, which uses them as starters of their fermentations. Here, we propose a very simple method to model the fitness advantage, which allows the prediction of the competitiveness of one strain with respect to different abiotic factors.  相似文献   

9.
The gene responsible for the malolactic fermentation of wine was cloned from the bacterium Lactobacillus delbrueckii into Escherichia coli and the yeast Saccharomyces cerevisiae. This gene codes for the malolactic enzyme which catalyzes the conversion of l-malate to l-lactate. A genetically engineered yeast strain with this enzymatic capability would be of considerable value to winemakers. L. delbrueckii DNA was cloned in E. coli on the plasmid pBR322, and two E. coll clones able to convert l-malate to l-lactate were selected. Both clones contained the same 5-kilobase segment of L. delbrueckii DNA. The DNA segment was transferred to E. coli-yeast shuttle vectors, and gene expression was analyzed in both hosts by using enzymatic assays for l-lactate and l-malate. When grown nonaerobically for 5 days, E. coli cells harboring the malolactic gene converted about 10% of the l-malate in the medium to l-lactate. The best expression in S. cerevisiae was attained by transfer of the gene to a shuttle vector containing both a yeast 2-mum plasmid and yeast chromosomal origin of DNA replication. When yeast cells harboring this plasmid were grown nonaerobically for 5 days, ca. 1.0% of the l-malate present in the medium was converted to l-lactate. The L. delbrueckii controls grown under these same conditions converted about 25%. A laboratory yeast strain containing the cloned malolactic gene was used to make wine in a trial fermentation, and about 1.5% of the l-malate in the grape must was converted to l-lactate. Increased expression of the malolactic gene in wine yeast will be required for its use in winemaking. This will require an increased understanding of the factors governing the expression of this gene in yeasts.  相似文献   

10.
The occurrence of killer yeasts in an area of Tuscany (central Italy) was studied. Killer yeasts were found in 88% of spontaneous wine fermentations from 18 wineries. The incidence of killers varied with respect to fermentation stage and vintage period, increasing from the first vintage to successive ones and from the commencement to the end of fermentation. At the end of fermentation, the proportion of killer strains relative to total yeast population was below 25% in 15 cases, above 75% in 6 cases, from 25 to 50% in 5 cases, and from 50 to 75% in 3 cases. Karyotype analysis also showed a mixed killer population in the fermentations in which the killers dominated.  相似文献   

11.
12.
Two hundred monocultures of lactic acid bacteria and 30 associations of yeasts and lactic acid bacteria have been studied. A stable association was developed which was capable of decreasing wine acidity. The association contained two species of bacteria, Leuconostoc oenosand Pediococcus pentosaceus, and the yeast Saccharomyces cerevisiae. The physiology of the microorganisms was studied, and their effects on the chemical composition of wines were determined.  相似文献   

13.
Secondary fermentation of sweet wine was prevented by the Delle stabilization procedure. For this procedure, advantage is taken of the inhibitory effects of high concentrations of sugar as well as of alcohol. Thus, relatively small amounts of wine spirits were added to fermenting musts to obtain stability, as compared to the conventional procedure in which larger amounts of alcohol are added and the inhibitory effect of alcohol only is considered. The Delle value is a function of the concentrations in the wine, after spirits addition, of alcohol and sugar. Delle values which gave stable wine were dependent on time of alcohol addition, on strain of wine yeast, and on composition of wine spirits. Fractional addition of spirits, concentration of SO(2), and clarity of must had little effect on the Delle value. Sensory comparison of wines especially prepared for tasting by the Delle procedure and by the conventional procedure showed the wines made by the Delle procedure to be superior in quality. Under proper storage conditions, the Delle wines were shown to be microbiologically stable and resistant to wine spoilage organisms.  相似文献   

14.
The qualitative and quantitative composition of water-soluble B group vitamins in Saccharomyces yeasts cultivated on various nutrient media was studied by high-performance liquid chromatography. New strains of Saccharomyces oviformis Y-2635 and Saccharomyces vini F-5, grown in a nutrient medium with geothermal water, are characterized by increased biological value due to high intracellular concentrations of riboflavin, LB, nicotinic acid, and folic acid.  相似文献   

15.
An evaluation methodology is outlined for roadside surveys of blood alcohol content in drivers, where correlative attributes are absent or at most weakly related to the alcohol levels. The methodology is based on concepts of statistical information theory, and may be extended into a continuous model of the distribution systems arising from such or similar surveys with voluntary participation.  相似文献   

16.
A simple one-step process for the nucleic acid reduction in Rhodotorula glutinis is described. The process consists of submitting the yeast cells to a heat treatment in an acidic (pH 2) spent medium. The optimal temperature for pH 2 medium is 90 C and the final nucleic acid content in treated yeasts was 1.2%. Heat treatment at acidic pH is preferred to that at alkaline pH because it offers a better protection for amino acids and crude protein, while being more efficient in lowering the nucleic acid level. The new process is economic and rapid and could be easily used for industrial application.  相似文献   

17.
A simplified identification key described by Deak and Beuchat (T. Deak and L. R. Beuchat, J. Food Prot. 50:243-264, 1987) and the computer method of Barnett et al. (J. A. Barnett, R. W. Payne, and D. Yarrow, Yeast Identification Program, 1985) were used to identify 12 reference strains and 382 yeasts isolated from cultured milk products. Because the simplified key failed to account for species variability with regard to physiological, morphological, and sexual reproduction characteristics, poor agreement of the identification results was obtained. A reevaluation of the basic theoretical assumptions of the simplified key only confirmed the practical results and indicates that this identification method is unsatisfactory  相似文献   

18.
Problematic fermentations are common in the wine industry. Assimilable nitrogen deficiency is the most prevalent cause of sluggish fermentations and can reduce fermentation rates significantly. A lack of nitrogen diminishes a yeast's metabolic activity, as well as the biomass yield, although it has not been clear which of these two interdependent factors is more significant in sluggish fermentations. Under winemaking conditions with different initial nitrogen concentrations, metabolic flux analysis was used to isolate the effects. We quantified yeast physiology and identified key metabolic fluxes. We also performed cell concentration experiments to establish how biomass yield affects the fermentation rate. Intracellular analysis showed that trehalose accumulation, which is highly correlated with ethanol production, could be responsible for sustaining cell viability in nitrogen-poor musts independent of the initial assimilable nitrogen content. Other than the higher initial maintenance costs in sluggish fermentations, the main difference between normal and sluggish fermentations was that the metabolic flux distributions in nitrogen-deficient cultures revealed that the specific sugar uptake rate was substantially lower. The results of cell concentration experiments, however, showed that in spite of lower sugar uptake, adding biomass from sluggish cultures not only reduced the time to finish a problematic fermentation but also was less likely to affect the quality of the resulting wine as it did not alter the chemistry of the must.  相似文献   

19.
Abstract

By incorporating a “capping step” at the start of an oligonucleotide synthesis (“pre-cap”) and following a “SUP” work-up protocol with ammonium hydroxide, an overall improvement is observed in the quality of oligonucleotides synthesized on a large scale on controlled pore glass support (CPG). Rationalization of these results is provided.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号