首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 174 毫秒
1.
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder with a strong genetic background. Nevertheless, SLE might also be triggered due to environmental factors, such as UV light exposure. DNA double strand breaks (DSBs) may be induced secondarily by UV radiation, increasing DNA immunogenicity and in SLE patients DNA repair is diminished, allowing the accumulation of DSBs and genomic instability. LIG4 and RAD52 genes play important roles in DNA repair mechanisms and a recent microarray analysis showed their differential expression in active SLE patients. In this study we investigated a potential association between LIG4 and RAD52 single nucleotide polymorphisms (SNPs) and SLE predisposition in a Southeast Brazilian population. We assessed four Tag SNPs in LIG4 and three in RAD52 gene region, encompassing most of the gene sequence, in 158 SLE patients and 212 healthy controls. We also performed SNPs analysis considering clinical manifestation, gender and ethnicity in SLE patients. Our data did not show association between LIG4 and RAD52 SNPs and SLE, its clinical manifestations or ethnicity in the tested population. The analysis regarding ethnicity and SLE clinical manifestations indicated Caucasian-derived patients as more susceptible to cutaneous and hematological alterations than the African-derived. To our knowledge, this is the first association study involving LIG4 and RAD52 genes and SLE predisposition.  相似文献   

2.
In spite of the well-known clustering of multiple autoimmune disorders in families, analyses of specific shared genes and polymorphisms between systemic lupus erythematosus (SLE) and other autoimmune diseases (ADs) have been limited. Therefore, we comprehensively tested autoimmune variants for association with SLE, aiming to identify pleiotropic genetic associations between these diseases. We compiled a list of 446 non–Major Histocompatibility Complex (MHC) variants identified in genome-wide association studies (GWAS) of populations of European ancestry across 17 ADs. We then tested these variants in our combined Caucasian SLE cohorts of 1,500 cases and 5,706 controls. We tested a subset of these polymorphisms in an independent Caucasian replication cohort of 2,085 SLE cases and 2,854 controls, allowing the computation of a meta-analysis between all cohorts. We have uncovered novel shared SLE loci that passed multiple comparisons adjustment, including the VTCN1 (rs12046117, P = 2.02×10−06) region. We observed that the loci shared among the most ADs include IL23R, OLIG3/TNFAIP3, and IL2RA. Given the lack of a universal autoimmune risk locus outside of the MHC and variable specificities for different diseases, our data suggests partial pleiotropy among ADs. Hierarchical clustering of ADs suggested that the most genetically related ADs appear to be type 1 diabetes with rheumatoid arthritis and Crohn''s disease with ulcerative colitis. These findings support a relatively distinct genetic susceptibility for SLE. For many of the shared GWAS autoimmune loci, we found no evidence for association with SLE, including IL23R. Also, several established SLE loci are apparently not associated with other ADs, including the ITGAM-ITGAX and TNFSF4 regions. This study represents the most comprehensive evaluation of shared autoimmune loci to date, supports a relatively distinct non–MHC genetic susceptibility for SLE, provides further evidence for previously and newly identified shared genes in SLE, and highlights the value of studies of potentially pleiotropic genes in autoimmune diseases.  相似文献   

3.
Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disease caused by both genetic and environmental factors. Genome scans in families with SLE point to multiple potential chromosomal regions that harbor SLE susceptibility genes, and association studies in different populations have suggested several susceptibility alleles for SLE. Increased production of type I interferon (IFN) and expression of IFN-inducible genes is commonly observed in SLE and may be pivotal in the molecular pathogenesis of the disease. We analyzed 44 single-nucleotide polymorphisms (SNPs) in 13 genes from the type I IFN pathway in 679 Swedish, Finnish, and Icelandic patients with SLE, in 798 unaffected family members, and in 438 unrelated control individuals for joint linkage and association with SLE. In two of the genes—the tyrosine kinase 2 (TYK2) and IFN regulatory factor 5 (IRF5) genes—we identified SNPs that displayed strong signals in joint analysis of linkage and association (unadjusted P<10-7) with SLE. TYK2 binds to the type I IFN receptor complex and IRF5 is a regulator of type I IFN gene expression. Thus, our results support a disease mechanism in SLE that involves key components of the type I IFN system.  相似文献   

4.
The complexity of clinical manifestations commonly observed in autoimmune disorders poses a major challenge to genetic studies of such diseases. Systemic lupus erythematosus (SLE) affects humans as well as other mammals, and is characterized by the presence of antinuclear antibodies (ANA) in patients’ sera and multiple disparate clinical features. Here we present evidence that particular sub-phenotypes of canine SLE-related disease, based on homogenous (ANAH) and speckled ANA (ANAS) staining pattern, and also steroid-responsive meningitis-arteritis (SRMA) are associated with different but overlapping sets of genes. In addition to association to certain MHC alleles and haplotypes, we identified 11 genes (WFDC3, HOMER2, VRK1, PTPN3, WHAMM, BANK1, AP3B2, DAPP1, LAMTOR3, DDIT4L and PPP3CA) located on five chromosomes that contain multiple risk haplotypes correlated with gene expression and disease sub-phenotypes in an intricate manner. Intriguingly, the association of BANK1 with both human and canine SLE appears to lead to similar changes in gene expression levels in both species. Our results suggest that molecular definition may help unravel the mechanisms of different clinical features common between and specific to various autoimmune disease phenotypes in dogs and humans.  相似文献   

5.
Receptors for the Fc domains of IgG (Fc γ R) play a critical role in linking humoral and cellular immune responses. The various Fc γ R genes may contribute to differences in infectious and immune related diseases in various ethnic populations. Polymorphisms of Fc γ R mainly Fc γ R IIA, IIB, IIIA, IIIB have been identified as genetic factors influencing susceptibility to disease or disease course of a prototype autoimmune disease like Systemic Lupus Erythematosus (SLE). Activated and inhibitory Fc γ Rs seem to play an important role in the pathogenesis of SLE, in initiation of autoimmunity, the subsequent development of inflammatory lesions and finally immune clearance mechanisms. This review focuses on the role of Fc γ R polymorphism and their association with clinical manifestations and initiation of autoantibody production, inflammatory handling of immune complexes and disease development in SLE patients.  相似文献   

6.
7.
Systemic sclerosis (SSc) is a rare systemic autoimmune disease characterized by skin and organ fibrosis. The pathogenesis of SSc and its progression are poorly understood. The SSc intrinsic gene expression subsets (inflammatory, fibroproliferative, normal-like, and limited) are observed in multiple clinical cohorts of patients with SSc. Analysis of longitudinal skin biopsies suggests that a patient''s subset assignment is stable over 6–12 months. Genetically, SSc is multi-factorial with many genetic risk loci for SSc generally and for specific clinical manifestations. Here we identify the genes consistently associated with the intrinsic subsets across three independent cohorts, show the relationship between these genes using a gene-gene interaction network, and place the genetic risk loci in the context of the intrinsic subsets. To identify gene expression modules common to three independent datasets from three different clinical centers, we developed a consensus clustering procedure based on mutual information of partitions, an information theory concept, and performed a meta-analysis of these genome-wide gene expression datasets. We created a gene-gene interaction network of the conserved molecular features across the intrinsic subsets and analyzed their connections with SSc-associated genetic polymorphisms. The network is composed of distinct, but interconnected, components related to interferon activation, M2 macrophages, adaptive immunity, extracellular matrix remodeling, and cell proliferation. The network shows extensive connections between the inflammatory- and fibroproliferative-specific genes. The network also shows connections between these subset-specific genes and 30 SSc-associated polymorphic genes including STAT4, BLK, IRF7, NOTCH4, PLAUR, CSK, IRAK1, and several human leukocyte antigen (HLA) genes. Our analyses suggest that the gene expression changes underlying the SSc subsets may be long-lived, but mechanistically interconnected and related to a patients underlying genetic risk.  相似文献   

8.
Systemic lupus erythematosus is a chronic autoimmune disease of complex clinical presentation and etiology and is likely influenced by numerous genetic and environmental factors. While a large number of susceptibility genes have been identified, the production of antibodies against a distinct subset of nuclear proteins remains a primary distinguishing characteristic in disease diagnosis. However, the utility of autoantibody biomarkers for disease sub-classification and grouping remains elusive, in part, because of the difficulty in large scale profiling using a uniform, quantitative platform. In the present study serological profiles of several known SLE antigens, including Sm-D3, RNP-A, RNP-70k, Ro52, Ro60, and La, as well as other cytokine and neuronal antigens were obtained using the luciferase immunoprecipitation systems (LIPS) approach. The resulting autoantibody profiles revealed that 88% of a pilot cohort and 98% of a second independent cohort segregated into one of two distinct clusters defined by autoantibodies against Sm/anti-RNP or Ro/La autoantigens, proteins often involved in RNA binding activities. The Sm/RNP cluster was associated with a higher prevalence of serositis in comparison to the Ro/La cluster (P = 0.0022). However, from the available clinical information, no other clinical characteristics were associated with either cluster. In contrast, evaluation of autoantibodies on an individual basis revealed an association between anti-Sm (P = 0.006), RNP-A (P = 0.018) and RNP-70k (P = 0.010) autoantibodies and mucocutaneous symptoms and between anti-RNP-70k and musculoskeletal manifestations (P = 0.059). Serologically active, but clinically quiescent disease also had a higher prevalence of anti-IFN-α autoantibodies. Based on our findings that most SLE patients belong to either a Sm/RNP or Ro/La autoantigen cluster, these results suggest the possibility that alterations in RNA-RNA-binding protein interactions may play a critical role in triggering and/or the pathogenesis of SLE.  相似文献   

9.
Systemic lupus erythematosus (SLE) is a multisystem autoimmune disorder in which complex genetic factors play an important role. Several strains of gene-targeted mice have been reported to develop SLE, implicating the null genes in the causation of disease. However, hybrid strains between 129 and C57BL/6 mice, widely used in the generation of gene-targeted mice, develop spontaneous autoimmunity. Furthermore, the genetic background markedly influences the autoimmune phenotype of SLE in gene-targeted mice. This suggests an important role in the expression of autoimmunity of as-yet-uncharacterised background genes originating from these parental mouse strains. Using genome-wide linkage analysis, we identified several susceptibility loci, derived from 129 and C57BL/6 mice, mapped in the lupus-prone hybrid (129 × C57BL/6) model. By creating a C57BL/6 congenic strain carrying a 129-derived Chromosome 1 segment, we found that this 129 interval was sufficient to mediate the loss of tolerance to nuclear antigens, which had previously been attributed to a disrupted gene. These results demonstrate important epistatic modifiers of autoimmunity in 129 and C57BL/6 mouse strains, widely used in gene targeting. These background gene influences may account for some, or even all, of the autoimmune traits described in some gene-targeted models of SLE.  相似文献   

10.
Pathway-based analysis approach has exploded in use during the last several years. It is successful in recognizing additional biological insight of disease and finding groupings of risk genes that represent disease developing processes. Therefore, shared pathways, with pleiotropic effects, are important for understanding similar pathogenesis and indicating the common genetic origin of certain diseases. Here, we present a pathway analysis to reveal the potential disease associations between RA and three potential RA-related autoimmune diseases: psoriasis, diabetes mellitus, type 1 (T1D) and systemic lupus erythematosus (SLE). First, a comprehensive knowledge mining of public databases is performed to discover risk genes associated with RA, T1D, SLE and psoriasis; then by enrichment test of these genes, disease-related risk pathways are detected to recognize the pathways common for RA and three other diseases. Finally, the underlying disease associations are evaluated with the association rules mining method. In total, we identify multiple RA risk pathways with significant pleiotropic effects, the most unsurprising of which are the immunology related pathways. Meanwhile for the first time we highlight the involvement of the viral myocarditis pathway related to cardiovascular disease (CVD) in autoimmune diseases such as RA, psoriasis, T1D and SLE. Further Association rule mining results validate the strong association between RA and T1D and RA and SLE. It is clear that pleiotropy is a common property of pathways associated with disease traits. We provide novel pathway associations among RA and three autoimmune diseases. These results ascertain that there are shared genetic risk profiles that predispose individuals to autoimmune diseases.  相似文献   

11.
Systemic lupus erythematosus (SLE) is an autoimmune disease with a strong genetic component and is characterized by chronic inflammation and the production of anti-nuclear auto-antibodies. In the era of genome-wide association studies (GWASs), elucidating the genetic factors present in SLE has been a very successful endeavor; 28 confirmed disease susceptibility loci have been mapped. In this review, we summarize the current understanding of the genetics of lupus and focus on the strongest associated risk loci found to date (P <1.0 × 10−8). Although these loci account for less than 10% of the genetic heritability and therefore do not account for the bulk of the disease heritability, they do implicate important pathways, which contribute to SLE pathogenesis. Consequently, the main focus of the review is to outline the genetic variants in the known associated loci and then to explore the potential functional consequences of the associated variants. We also highlight the genetic overlap of these loci with other autoimmune diseases, which indicates common pathogenic mechanisms. The importance of developing functional assays will be discussed and each of them will be instrumental in furthering our understanding of these associated variants and loci. Finally, we indicate that performing a larger SLE GWAS and applying a more targeted set of methods, such as the ImmunoChip and next generation sequencing methodology, are important for identifying additional loci and enhancing our understanding of the pathogenesis of SLE.  相似文献   

12.
Systemic lupus erythematosus (SLE) represents a challenging autoimmune disease from a clinical perspective because of its varied forms of presentation. Although broad-spectrum steroids remain the standard treatment for SLE, they have many side effects and only provide temporary relief from the symptoms of the disease. Thus, gaining a deeper understanding of the genetic traits and biological pathways that confer susceptibility to SLE will help in the design of more targeted and effective therapeutics. Both human genome-wide association studies (GWAS) and investigations using a variety of mouse models of SLE have been valuable for the identification of the genes and pathways involved in pathogenesis. In this Review, we link human susceptibility genes for SLE with biological pathways characterized in mouse models of lupus, and discuss how the mechanistic insights gained could advance drug discovery for the disease.KEY WORDS: Lupus, SLE, Human genetics, Mouse models, Susceptibility genes  相似文献   

13.
Systemic lupus erythematosus (SLE) is an autoimmune disorder with several clinical manifestations. SLE etiology has a strong genetic component, which plays a key role in disease's predisposition, as well as participation of environmental factors, such and UV light exposure. In this regard, we investigated whether polymorphisms in STK17A, a DNA repair related gene, encoding for serine/threonine-protein kinase 17A, are associated with SLE susceptibility. A total of 143 SLE patients and 177 healthy controls from Southern Brazil were genotyped for five STK17A TagSNPs. Our results indicated association of rs7805969 SNP (A and G/A genotype, OR = 1.40 and OR = 1.73, respectively) with SLE predisposition and the following clinical manifestations: arthritis, cutaneous and immunological alterations. When analyzing haplotypes distribution, we found association between TGGTC, TAGTC and AAGAT haplotypes and risk to develop SLE. When considering clinical manifestations, the haplotypes TGGTT and TAGTC were associated with protection against cutaneous alterations and the haplotype TAGTC to hematological alterations. We also observed association between SLE clinical manifestations and ethnicity, with the European-derived patients being more susceptible to cutaneous and hematological alterations.  相似文献   

14.
Recent genome-wide association studies have advanced our understanding of genetic factors that underlie systemic lupus erythematosus (SLE), a multifactorial autoimmune disease characterized by various clinical manifestations. SLE also has an environmental component, which can trigger or exacerbate the disease. Despite extensive efforts aimed at elucidating the cellular and biological abnormalities that arise in the immune system of patients with SLE, its pathology remains unclear. Lee and colleagues recently carried out gene expression profiling of patients with SLE followed by bioinformatics analysis and discovered the existence of abnormal regulatory networks and potential key molecules. The authors found that ATP synthesis and DNA repair pathways may be involved in the pathogenesis, providing a potential explanation for photosensitivity experienced by patients with SLE.  相似文献   

15.
Systemic lupus erythematosus (SLE) is a multisystem autoimmune disorder in which complex genetic factors play an important role. Several strains of gene-targeted mice have been reported to develop SLE, implicating the null genes in the causation of disease. However, hybrid strains between 129 and C57BL/6 mice, widely used in the generation of gene-targeted mice, develop spontaneous autoimmunity. Furthermore, the genetic background markedly influences the autoimmune phenotype of SLE in gene-targeted mice. This suggests an important role in the expression of autoimmunity of as-yet-uncharacterised background genes originating from these parental mouse strains. Using genome-wide linkage analysis, we identified several susceptibility loci, derived from 129 and C57BL/6 mice, mapped in the lupus-prone hybrid (129 × C57BL/6) model. By creating a C57BL/6 congenic strain carrying a 129-derived Chromosome 1 segment, we found that this 129 interval was sufficient to mediate the loss of tolerance to nuclear antigens, which had previously been attributed to a disrupted gene. These results demonstrate important epistatic modifiers of autoimmunity in 129 and C57BL/6 mouse strains, widely used in gene targeting. These background gene influences may account for some, or even all, of the autoimmune traits described in some gene-targeted models of SLE.  相似文献   

16.

Background

Systemic lupus erythematosus (SLE) is an autoimmune disease with complex pathogenesis in which genes and environmental factors are involved. We aimed at analyzing previously identified loci associated with SLE or with other autoimmune and/or inflammatory disorders (STAT4, IL10, IL23R, IRAK1, PSORS1C1, HCP5, MIR146a, PTPN2, ERAP1, ATG16L1, IRGM) in a sample of Italian SLE patients in order to verify or confirm their possible involvement and relative contribution in the disease.

Materials and methods

Two hundred thirty-nine consecutive SLE patients and 278 matched healthy controls were enrolled. Study protocol included complete physical examination, and clinical and laboratory data collection. Nineteen polymorphisms were genotyped by allelic discrimination assays. A case-control association study and a genotype-phenotype correlation were performed.

Results

STAT4 was the most associated gene [P = 3×10−7, OR = 2.13 (95% CI: 1.59–2.85)]. IL10 confirmed its association with SLE [rs3024505: P = 0.02, OR = 1.52 (95% CI: 1.07–2.16)]. We describe a novel significant association between HCP5 locus and SLE susceptibility [rs3099844: P = 0.01, OR = 2.06 (95% CI: 1.18–3.6)]. The genotype/phenotype correlation analysis showed several associations including a higher risk to develop pericarditis with STAT4, and an association between HCP5 rs3099844 and anti-Ro/SSA antibodies.

Conclusions

STAT4 and IL10 confirm their association with SLE. We found that some SNPs in PSORS1C1, ATG16L1, IL23R, PTPN2 and MIR146a genes can determine particular disease phenotypes. HCP5 rs3099844 is associated with SLE and with anti-Ro/SSA. This polymorphism has been previously found associated with cardiac manifestations of SLE, a condition related with anti-Ro/SSA antibodies. Thus, our results may provide new insights into SLE pathogenesis.  相似文献   

17.
Autoimmune disorders constitute a diverse group of phenotypes with overlapping features and a tendency toward familial aggregation. It is likely that common underlying genes are involved in these disorders. Until very recently, no specific alleles--aside from a few common human leukocyte antigen class II genes--had been identified that clearly associate with multiple different autoimmune diseases. In this study, we describe a unique collection of 265 multiplex families assembled by the Multiple Autoimmune Disease Genetics Consortium (MADGC). At least two of nine "core" autoimmune diseases are present in each of these families. These core diseases include rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), type 1 diabetes (T1D), multiple sclerosis (MS), autoimmune thyroid disease (Hashimoto thyroiditis or Graves disease), juvenile RA, inflammatory bowel disease (Crohn disease or ulcerative colitis), psoriasis, and primary Sjogren syndrome. We report that a recently described functional single-nucleotide polymorphism (rs2476601, encoding R620W) in the intracellular tyrosine phosphatase (PTPN22) confers risk of four separate autoimmune phenotypes in these families: T1D, RA, SLE, and Hashimoto thyroiditis. MS did not show association with the PTPN22 risk allele. These findings suggest a common underlying etiologic pathway for some, but not all, autoimmune disorders, and they suggest that MS may have a pathogenesis that is distinct from RA, SLE, and T1D. DNA and clinical data for the MADGC families are available to the scientific community; these data will provide a valuable resource for the dissection of the complex genetic factors that underlie the various autoimmune phenotypes.  相似文献   

18.
Systemic lupus erythematosus (SLE) is an autoimmune chronic inflammatory disease that presents several clinical manifestations, affecting multiple organs and systems. Immunological, environmental, hormonal and genetic factors may contribute to disease. Genes and proteins involved in metabolism and detoxification of xenobiotics are often used as susceptibility markers to diseases with environmental risk factors. Cytochrome P450 (CYP) enzymes activate the xenobiotic making it more reactive, while the Glutathione S-transferases (GST) enzymes conjugate the reduced glutathione with electrophilic compounds, facilitating the toxic products excretion. CYP and GST polymorphisms can alter the expression and catalytic activity of enzymes. This study aimed to investigate the role of genetic variants of CYP and GST in susceptibility and clinical expression of SLE, through the analysis of GSTM1 null, GSTT1 null, GSTP1*Ile105Val, CYP1A1*2C and CYP2E1*5B polymorphisms. 371 SLE patients from Hospital de Clínicas de Porto Alegre and 522 healthy blood donors from southern Brazil were evaluated. GSTP1 and CYP variants were genotyped using PCR–RFLP and GSTT1 and GSTM1 variants were analyzed by multiplex PCR. Among European-derived individuals, a lower frequency of GSTP1*Val heterozygous genotypes was found in SLE patients when compared to controls (p = 0.005). In African-derived SLE patients, the CYP2E1*5B allelic frequency was higher in relation to controls (p = 0.054). We did not observe any clinical implication of the CYP and GST polymorphisms in patients with SLE. Our data suggest a protective role of the GSTP1*Ile/Val heterozygous genotype against the SLE in European-derived and a possible influence of the CYP2E1*5B allele in SLE susceptibility among African-derived individuals.  相似文献   

19.
Leprosy (Hansen??s disease) is a human infectious disease whose etiological agent, Mycobacterium leprae, was identified by G. H. A. Hansen in the 19th century. Despite the high efficacy of multidrug therapy (<0.1% annual relapse rate), transmission is persistent. In 2008, approximately 250,000 new cases were reported to the World Health Organization. Clinically, leprosy presents as either the paucibacillary (1?C5 lesions) or the multibacillary (>5 lesions) subtype, highly reflective of a Th1 (cell-mediated) or Th2 (humoral) host immune response, respectively. Subsequent to Mycobacterium leprae exposure, epidemiological studies (e.g., twin studies and complex segregation analyses) maintain the importance of host genetics in susceptibility to leprosy. The results of genome-wide analyses (linkage and association) and candidate gene studies suggest an independent genetic control over both susceptibility to leprosy per se and development of clinical subtype. Moreover, the emergence of a shared genetic background between leprosy and several inflammatory/autoimmune diseases suggests that leprosy is a suitable model for studying the genetic architecture and subsequent pathogenesis of both infectious and inflammatory/autoimmune diseases. We provide the example of NOD2 (Crohn??s disease gene) and LTA (myocardial infarction gene) and the implication of a common genetic risk factor between these two diseases and leprosy. The value of leprosy as a model disease therefore extends far beyond this ancient disease to common afflictions of the 21st century.  相似文献   

20.
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease. Although genetic factors confer susceptibility to the disease, only 15 % of the genetic contribution has been identified. TRAF3IP2 gene, associated with susceptibility to psoriatic arthritis and psoriasis, encodes for Act1, a negative regulator of adaptive immunity and a positive signaling adaptor in IL-17-mediated immune responses. The aim of this study was to assess the role of TRAF3IP2 gene variability in SLE susceptibility and disease phenotype in an Italian population. Two hundred thirty-nine consecutive SLE patients were enrolled. Study protocol included complete physical examination; the clinical and laboratory data were collected. Two hundred seventy-eight age- and ethnicity-matched healthy subjects served as controls. TRAF3IP2 polymorphisms (rs33980500, rs13190932, and rs13193677) were analyzed in both cases and controls. Genotype analysis was performed by allelic discrimination assays. A case–control association study and a genotype–phenotype correlation were performed. The rs33980500 and rs13193677 resulted significantly associated with SLE susceptibility (P?=?0.021, odds ratio (OR)?=?1.71, and P?=?0.046, OR?=?1.73, respectively). All three TRAF3IP2 single nucleotide polymorphisms resulted associated with the development of pericarditis; in particular, rs33980500 showed the strongest association (P?=?0.002, OR 2.59). This association was further highlighted by binary logistic regression analysis. In conclusion, our data show for the first time the contribution of TRAF3IP2 genetic variability in SLE susceptibility, providing further suggestions that common variation in genes that function in the adaptive and innate arms of the immune system are important in establishing SLE risk. Our study also shows that this gene may affect disease phenotype and, particularly, the occurrence of pericarditis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号