首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 351 毫秒
1.
Ninety-one Pseudomonas aeruginosa isolates recovered from cystic fibrosis and non-cystic fibrosis patients were evaluated regarding the ability to form biofilm and acyl-homoserine lactones production and for the presence of five quorum-sensing (QS) regulatory genes (lasI, lasR, rhlI, rhlR, and vfr). Most isolates (90.1 %) presented all five QS genes. Five isolates shown to be lasI/lasR-deficient were not able to produce biofilm in vitro. Moreover, one isolate harboring all five QS genes was also not able to form a biofilm. The function of rhlR gene may be compensated by the las QS system. However, in our study, all isolates which were deficient for the rhlR gene were also deficient for the lasI/lasR system. This may point to some hierarchy in QS regulation which may pose a potential for controlling biofilm infections due to P. aeruginosa.  相似文献   

2.
In Pseudomonas aeruginosa, a quorum sensing (QS) system regulates the expression of many virulence factors. N-acyl homoserine lactone (HSL) is the signal molecule of QS system. In order to find a novel HSL binder to interfere with QS signaling and to attenuate P. aeruginosa virulence, an amino lactam surrogate (ALS) of HSL was used as a target to screen HSL aptamers with the technique of systematic evolution of ligands by exponential enrichment (SELEX). Eight HSL aptamers with high affinities for 3O-C12-HSL (20 nM ≤ K d < 35 nM) or C4-HSL (25 nM < K d < 50 nM) were finally obtained. In vitro QS-inhibiting study of P. aeruginosa showed that HSL aptamers could inhibit virulence in a dose-dependent manner. ALSap-8 which bound C4-HSL primarily acted on the rhl system and inhibited the secretion of pyocyanin. ALSap-5 which bound 3O-C12-HSL not only showed strong inhibitory activity on biofilm formation as well as secretions of LasA protease and LasB elastase, but also reduced pyocyanin secretion. Since the las system is capable of activating the rhl system mildly, we speculated that ALSap-5 can simultaneously interfere with the las and rhl systems. High-affinity aptamers against HSL in this study are novel QS and virulence-inhibitors, and may have potential as drug candidates for the treatment of P. aeruginosa infection.  相似文献   

3.
4.
Pseudomonas aeruginosa is a Gram-negative bacterium that is responsible for a wide range of infections in humans. Colonies employ quorum sensing (QS) to coordinate gene expression, including for virulence factors, swarming motility and complex social traits. The QS signalling system of P. aeruginosa is known to involve multiple control components, notably the las, rhl and pqs systems. In this paper, we examine the las system and, in particular, the repressive interaction of rsaL, an embedded small regulative protein, employing recent biochemical information to aid model construction. Using analytic methods, we show how this feature can give rise to excitable pulse generation in this subsystem with important downstream consequences for rhamnolipid production. We adopt a symmetric competitive inhibition to capture the binding in the lasI–rsaL intergenic region and show our results are not dependent on the exact choice of this functional form. Furthermore, we examine the coupling of lasR to the rhl system, the impact of the predicted capacity for pulse generation and the biophysical consequences of this behaviour. We hypothesize that the interaction between the las and rhl systems may provide a quorum memory to enable cells to trigger rhamnolipid production only when they are at the edge of an established aggregation.  相似文献   

5.
Pseudomonas aeruginosa is the predominant microorganism in chronic lung infection of cystic fibrosis patients. The chronic lung infection is preceded by intermittent colonization. When the chronic infection becomes established, it is well accepted that the isolated strains differ phenotypically from the intermittent strains. Dominating changes are the switch to mucoidity (alginate overproduction) and loss of epigenetic regulation of virulence such as the Quorum Sensing (QS). To elucidate the dynamics of P. aeruginosa QS systems during long term infection of the CF lung, we have investigated 238 isolates obtained from 152 CF patients at different stages of infection ranging from intermittent to late chronic. Isolates were characterized with regard to QS signal molecules, alginate, rhamnolipid and elastase production and mutant frequency. The genetic basis for change in QS regulation were investigated and identified by sequence analysis of lasR, rhlR, lasI and rhlI. The first QS system to be lost was the one encoded by las system 12 years (median value) after the onset of the lung infection with subsequent loss of the rhl encoded system after 17 years (median value) shown as deficiencies in production of the 3-oxo-C12-HSL and C4-HSL QS signal molecules respectively. The concomitant development of QS malfunction significantly correlated with the reduced production of rhamnolipids and elastase and with the occurrence of mutations in the regulatory genes lasR and rhlR. Accumulation of mutations in both lasR and rhlR correlated with development of hypermutability. Interestingly, a higher number of mucoid isolates were found to produce C4-HSL signal molecules and rhamnolipids compared to the non-mucoid isolates. As seen from the present data, we can conclude that P. aeruginosa and particularly the mucoid strains do not lose the QS regulation or the ability to produce rhamnolipids until the late stage of the chronic infection.  相似文献   

6.
Pseudomonas sp. M18 is a rhizosphere isolate capable of producing two kinds of antifungal agents: phenazine-1-carboxylic acid (PCA) and pyoluteorin. Recently, the two well-studied quorum sensing (QS) systems of Pseudomonas aeruginosa, LasR/LasI and RhlR/RhlI, have also been identified in this strain. However, in this study, through the use of lacZ translational fusion expression analysis and acyl-homoserine lactone thin-layer chromatography (TLC) bioassays, we clearly display a more complex and distinctive hierarchy of the las and rhl QS systems in strain M18. In this QS cascade, expression of rhlI was negatively controlled by the LasR/LasI QS system. In contrast with lasI, which negatively regulated the rhlR induction, lasR exerted a positive influence on rhlR expression during the log-phase. This interrelationship indicated that the response regulators (LasR and RhlR) of the QS system are expressed independently of their cognate synthases (LasI and RhlI). Furthermore, the las system also modulated the timing and magnitude of the rhlI and rhlR maximal expression. In addition, our data imply that the lasR gene exerts its negative control on PCA production through modulation of rhlI expression. Thus, interactions between the two QS systems are strain specific.  相似文献   

7.
As a ubiquitous environmental organism and an important human pathogen, Pseudomonas aeruginosa readily adapts and responds to a wide range of conditions and habitats. The intricate regulatory networks that link quorum sensing and other global regulators allow P. aeruginosa to coordinate its gene expression and cell signaling in response to different growth conditions and stressors. Upon nutrient transitions and starvation, as well as other environmental stresses, the stringent response is activated, mediated by the signal (p)ppGpp. P. aeruginosa produces a family of molecules called HAQ (4-hydroxy-2-alkylquinolines), some of which exhibit antibacterial and quorum-sensing signaling functions and regulate virulence genes. In this study, we report that (p)ppGpp negatively regulates HAQ biosynthesis: in a (p)ppGpp-null (ΔSR) mutant, HHQ (4-hydroxyl-2-heptylquinoline) and PQS (3,4-dihydroxy-2-heptylquinoline) levels are increased due to upregulated pqsA and pqsR expression and reduced repression by the rhl system. We also found that (p)ppGpp is required for full expression of both rhl and las AHL (acyl-homoserine lactone) quorum-sensing systems, since the ΔSR mutant has reduced rhlI, rhlR, lasI, and lasR expression, butanoyl-homoserine lactone (C4-HSL) and 3-oxo-dodecanoyl-homoserine lactone (3-oxo-C12-HSL) levels, and rhamnolipid and elastase production. Furthermore, (p)ppGpp significantly modulates the AHL and PQS quorum-sensing hierarchy, as the las system no longer has a dominant effect on HAQ biosynthesis when the stringent response is inactivated.  相似文献   

8.
The evolutionary stability of temperate bacteriophages at low abundance of susceptible bacterial hosts lies in the trade-off between the maximization of phage replication, performed by the host-destructive lytic cycle, and the protection of the phage-host collective, enacted by lysogeny. Upon Bacillus infection, Bacillus phages phi3T rely on the “arbitrium” quorum sensing (QS) system to communicate on their population density in order to orchestrate the lysis-to-lysogeny transition. At high phage densities, where there may be limited host cells to infect, lysogeny is induced to preserve chances of phage survival. Here, we report the presence of an additional, host-derived QS system in the phi3T genome, making it the first known virus with two communication systems. Specifically, this additional system, coined “Rapφ-Phrφ”, is predicted to downregulate host defense mechanisms during the viral infection, but only upon stress or high abundance of Bacillus cells and at low density of population of the phi3T phages. Post-lysogenization, Rapφ-Phrφ is also predicted to provide the lysogenized bacteria with an immediate fitness advantage: delaying the costly production of public goods while nonetheless benefiting from the public goods produced by other non-lysogenized Bacillus bacteria. The discovered “Rapφ-Phrφ” QS system hence provides novel mechanistic insights into how phage communication systems could contribute to the phage-host evolutionary stability.Subject terms: Bacteriophages, Viral genetics  相似文献   

9.
Acylated homoserine lactone molecules are used by a number of gram-negative bacteria to regulate cell density-dependent gene expression by a mechanism known as quorum sensing (QS). In Pseudomonas aeruginosa, QS or cell-to-cell signaling controls expression of a number of virulence factors, as well as biofilm differentiation. In this study, we investigated the role played by the las and rhl QS systems during the early stages of static biofilm formation when cells are adhering to a surface and forming microcolonies. These studies revealed a marked difference in biofilm formation between the PAO1 parent and the QS mutants when glucose, but not citrate, was used as the sole carbon source. To further elucidate the contribution of lasI and rhlI to biofilm maturation, we utilized fusions to unstable green fluorescent protein in concert with confocal microscopy to perform real-time temporal and spatial studies of these genes in a flowing environment. During the course of 8-day biofilm development, lasI expression was found to progressively decrease over time. Conversely, rhlI expression remained steady throughout biofilm development but occurred in a lower percentage of cells. Spatial analysis revealed that lasI and rhlI were maximally expressed in cells located at the substratum and that expression decreased with increasing biofilm height. Because QS was shown previously to be involved in biofilm differentiation, these findings have important implications for the design of biofilm prevention and eradication strategies.  相似文献   

10.
The evolution of host–parasite interactions could be affected by intraspecies variation between different host and parasite genotypes. Here we studied how bacterial host cell‐to‐cell signaling affects the interaction with parasites using two bacteria‐specific viruses (bacteriophages) and the host bacterium Pseudomonas aeruginosa that communicates by secreting and responding to quorum sensing (QS) signal molecules. We found that a QS‐signaling proficient strain was able to evolve higher levels of resistance to phages during a short‐term selection experiment. This was unlikely driven by demographic effects (mutation supply and encounter rates), as nonsignaling strains reached higher population densities in the absence of phages in our selective environment. Instead, the evolved nonsignaling strains suffered relatively higher growth reduction in the absence of the phage, which could have constrained the phage resistance evolution. Complementation experiments with synthetic signal molecules showed that the Pseudomonas quinolone signal (PQS) improved the growth of nonsignaling bacteria in the presence of a phage, while the activation of las and rhl quorum sensing systems had no effect. Together, these results suggest that QS‐signaling can promote the evolution of phage resistance and that the loss of QS‐signaling could be costly in the presence of phages. Phage–bacteria interactions could therefore indirectly shape the evolution of intraspecies social interactions and PQS‐mediated virulence in P. aeruginosa.  相似文献   

11.
The rhl quorum-sensing (QS) system plays critical roles in the pathogenesis of P. aeruginosa. However, the regulatory effects that occur directly upstream of the rhl QS system are poorly understood. Here, we show that deletion of gene encoding for the two-component sensor BfmS leads to the activation of its cognate response regulator BfmR, which in turn directly binds to the promoter and decreases the expression of the rhlR gene that encodes the QS regulator RhlR, causing the inhibition of the rhl QS system. In the absence of bfmS, the Acka-Pta pathway can modulate the regulatory activity of BfmR. In addition, BfmS tunes the expression of 202 genes that comprise 3.6% of the P. aeruginosa genome. We further demonstrate that deletion of bfmS causes substantially reduced virulence in lettuce leaf, reduced cytotoxicity, enhanced invasion, and reduced bacterial survival during acute mouse lung infection. Intriguingly, specific missense mutations, which occur naturally in the bfmS gene in P. aeruginosa cystic fibrosis (CF) isolates such as DK2 strains and RP73 strain, can produce BfmS variants (BfmSL181P, BfmSL181P/E376Q, and BfmSR393H) that no longer repress, but instead activate BfmR. As a result, BfmS variants, but not the wild-type BfmS, inhibit the rhl QS system. This study thus uncovers a previously unexplored signal transduction pathway, BfmS/BfmR/RhlR, for the regulation of rhl QS in P. aeruginosa. We propose that BfmRS TCS may have an important role in the regulation and evolution of P. aeruginosa virulence during chronic infection in CF lungs.  相似文献   

12.
4-Hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF), a non-halogenated furanone found in a variety of fruits, has been shown to have antimicrobial activity. However, few studies have focused on its inhibitory effect on bacterial quorum sensing (QS) at levels below the non-inhibitory concentration. In this study, 0.1 μM HDMF decreased the production of QS signal molecules and inhibited QS-controlled biofilm formation by Pseudomonas aeruginosa PAO1 without causing growth inhibition. In the presence of 0.1 and 1.0 μM HDMF, biofilm production by PAO1 was reduced by 27.8 and 42.6%, respectively, compared to that by untreated control cells. HDMF (1.0 μM) also significantly affected virulence factor expression (regulated by the las, rhl, and pqs system), resulting in a significant reduction in the production of LasA protease (53.8%), rhamnolipid (40.9%), and pyocyanin (51.4%). This HDMF-dependent inhibition of virulence factor expression was overcome by increasing the levels of two QS signal molecules of P. aeruginosa, N-(3-oxo-dodecanoyl)-L-homoserine lactone and N-butyryl-L-homoserine lactone, suggesting reversible competitive inhibition between HDMF and these molecules. The results of this study indicate that HDMF has great potential as an inhibitor of QS, and that it may be of value as a therapeutic agent and in biofilm control, without increasing selective pressure for resistance development.  相似文献   

13.
An increasing body of empirical evidence suggests that cooperation among clone-mates is common in bacteria. Bacterial cooperation may take the form of the excretion of “public goods”: exoproducts such as virulence factors, exoenzymes or components of the matrix in biofilms, to yield significant benefit for individuals joining in the common effort of producing them. Supposedly in order to spare unnecessary costs when the population is too sparse to supply the sufficient exoproduct level, many bacteria have evolved a simple chemical communication system called quorum sensing (QS), to “measure” the population density of clone-mates in their close neighborhood. Cooperation genes are expressed only above a threshold rate of QS signal molecule re-capture, i.e., above the local quorum of cooperators. The cooperative population is exposed to exploitation by cheaters, i.e., mutants who contribute less or nil to the effort but fully enjoy the benefits of cooperation. The communication system is also vulnerable to a different type of cheaters (“Liars”) who may produce the QS signal but not the exoproduct, thus ruining the reliability of the signal. Since there is no reason to assume that such cheaters cannot evolve and invade the populations of honestly signaling cooperators, the empirical fact of the existence of both bacterial cooperation and the associated QS communication system seems puzzling. Using a stochastic cellular automaton approach and allowing mutations in an initially non-cooperating, non-communicating strain we show that both cooperation and the associated communication system can evolve, spread and remain persistent. The QS genes help cooperative behavior to invade the population, and vice versa; cooperation and communication might have evolved synergistically in bacteria. Moreover, in good agreement with the empirical data recently available, this synergism opens up a remarkably rich repertoire of social interactions in which cheating and exploitation are commonplace.  相似文献   

14.
铜绿假单胞菌(Pseudomonas aeruginosa)是一种革兰氏阴性条件致病菌,可对免疫功能低下或损伤的患者造成持续性感染。铜绿假单胞菌能成功感染离不开其自身产生的毒力因子,而这些毒力因子大多数都受群体感应系统(quorum sensing,QS)调控。铜绿假单胞菌有4个QS系统,分别为las系统、rhl系统、pqs系统和iqs系统。2-庚基-3-羟基-4-喹诺酮(Pseudomonas quinolone signal,PQS)作为铜绿假单胞菌pqs系统的信号分子,不仅能够调控许多毒力因子的表达,也能够影响一些微生物和宿主的多种生理过程。本文总结了PQS多种生物学功能,如介导QS系统、调控生物被膜形成、介导外膜囊泡产生及铁摄取、调节宿主免疫活性、介导细胞毒性作用,以及提供种群保护等。本文旨在突出铜绿假单胞菌PQS的功能多样性,并为PQS新功能研究和抗菌药物的研发提供指导。  相似文献   

15.
Quorum sensing (QS) plays an important role in virulence, biofilm formation and survival of many pathogenic bacteria including Pseudomonas aeruginosa. This signalling pathway is considered as novel and promising target for anti-infective agents. In the present investigation, effect of the Sub-MICs of clove oil on QS regulated virulence factors and biofilm formation was evaluated against P. aeruginosa PAO1 and Aeromonas hydrophila WAF-38 strain. Sub-inhibitory concentrations of the clove oil demonstrated statistically significant reduction of las- and rhl-regulated virulence factors such as LasB, total protease, chitinase and pyocyanin production, swimming motility and exopolysaccharide production. The biofilm forming capability of PAO1 and A. hydrophila WAF-38 was also reduced in a concentration-dependent manner at all tested sub-MIC values. Further, the PAO1-preinfected Caenorhabditis elegans displayed an enhanced survival when treated with 1.6% v/v of clove oil. The above findings highlight the promising anti-QS-dependent therapeutic function of clove oil against P. aeruginosa.  相似文献   

16.
17.
Quorum sensing (QS) has received significant attention in the past few decades. QS describes population density dependent cell to cell communication in bacteria using diffusible signal molecules. These signal molecules produced by bacterial cells, regulate various physiological processes important for social behavior and pathogenesis. One such process regulated by quorum sensing molecules is the production of a biosurfactant, rhamnolipid. Rhamnolipids are important microbially derived surface active agents produced by Pseudomonas spp. under the control of two interrelated quorum sensing systems; namely las and rhl. Rhamnolipids possess antibacterial, antifungal and antiviral properties. They are important in motility, cell to cell interactions, cellular differentiation and formation of water channels that Currently, biosurfactants are unable to compete economically with chemically synthesized compounds in the market due to high production costs. Once the genes required for biosurfactant production have been identified, they can be placed under the regulation of strong promoters in nonpathogenic, heterologous hosts to enhance production. The production of rhamnolipids could be increased by cloning both the rhlAB rhamnosyltransferase genes and the rhlRI quorum sensing system into a suitable bacterium such as E. coli or P. putida and facilitate rhamnolipid production. Biosurfactants can also be genetically engineered for different industrial applications assuming there is a strong understanding of both the genetics and the structure-function relationships of each component of the molecule. Genetic engineering of surfactin has already been reported, with recent papers describing the creation of novel peptide structures from the genetic recombination of several peptide synthetases. Recent application of dynamic metabolic engineering strategies for controlled gene expression could lower the cost of fermentation processes by increasing the product formation. Therefore, by integrating a genetic circuit into applications of metabolic engineering the biochemical production can be optimized. Furthermore, novel strategies could be designed on the basis of information obtained from the studies of quorum sensing and biosurfactants produced suggesting enormous practical applications.  相似文献   

18.
Here, we studied how protist predation affects cooperation in the opportunistic pathogen bacterium Pseudomonas aeruginosa, which uses quorum sensing (QS) cell-to-cell signalling to regulate the production of public goods. By competing wild-type bacteria with QS mutants (cheats), we show that a functioning QS system confers an elevated resistance to predation. Surprisingly, cheats were unable to exploit this resistance in the presence of cooperators, which suggests that resistance does not appear to result from activation of QS-regulated public goods. Instead, elevated resistance of wild-type bacteria was related to the ability to form more predation-resistant biofilms. This could be explained by the expression of QS-regulated resistance traits in densely populated biofilms and floating cell aggregations, or alternatively, by a pleiotropic cost of cheating where less resistant cheats are selectively removed from biofilms. These results show that trophic interactions among species can maintain cooperation within species, and have further implications for P. aeruginosa virulence in environmental reservoirs by potentially enriching the cooperative and highly infective strains with functional QS system.  相似文献   

19.

Background

Members of swarming bacterial consortia compete for nutrients but also use a co-operation mechanism called quorum sensing (QS) that relies on chemical signals as well as other secreted products (“public goods”) necessary for swarming. Deleting various genes of this machinery leads to cheater mutants impaired in various aspects of swarming cooperation.

Methodology/Principal Findings

Pairwise consortia made of Pseudomonas aeruginosa, its QS mutants as well as B. cepacia cells show that a interspecies consortium can “combine the skills” of its participants so that the strains can cross together barriers that they could not cross alone. In contrast, deleterious mutants are excluded from consortia either by competition or by local population collapse. According to modeling, both scenarios are the consequence of the QS signalling mechanism itself.

Conclusion/Significance

The results indirectly explain why it is an advantage for bacteria to maintain QS systems that can cross-talk among different species, and conversely, why certain QS mutants which can be abundant in isolated niches, cannot spread and hence remain localized.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号