首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Genomic imprinting is an epigenetic process that results in the preferential silencing of one of the two parental copies of a gene. Although the precise mechanisms by which genomic imprinting occurs are unknown, the tendency of imprinted genes to exist in chromosomal clusters suggests long-range regulation through shared regulatory elements. We characterize a 800-kb region on the distal end of mouse chromosome 7 that contains a cluster of four maternally expressed genes, H19, Mash2, Kvlqt1, and p57Kip2, as well as two paternally expressed genes, Igf2 and Ins2, and assess the expression and imprinting of Mash2, Kvlqt1, and p57Kip2 during development in embryonic and extraembryonic tissues. Unlike Igf2 and Ins2, which depend on H19 for their imprinting, Mash2, p57Kip2, and Kvlqt1 are unaffected by a deletion of the H19 gene region, suggesting that these more telomeric genes are not regulated by the mechanism that controls H19, Igf2, and Ins2. Mutations in human p57Kip2 have been implicated in Beckwith-Wiedemann syndrome, a disease that has also been associated with loss of imprinting of IGF2. We find, however, that a deletion of the gene has no effect on imprinting within the cluster. Surprisingly, the three maternally expressed genes are regulated very differently by DNA methylation; p57Kip2 is activated, Kvlqt1 is silenced, and Mash2 is unaffected in mice lacking DNA methyltransferase. We conclude that H19 is not a global regulator of imprinting on distal chromosome 7 and that the telomeric genes are imprinted by a separate mechanism(s).  相似文献   

3.
4.
5.
The proliferation rate of a cell population reflects a balance between cell division, cell cycle arrest, differentiation and apoptosis. The regulation of these processes is central to development and tissue homeostasis, whereas dysregulation may lead to overt pathological outcomes, notably cancer and neurodegenerative disorders. We report here the cloning of a novel zinc finger protein which regulates apoptosis and cell cycle arrest and was accordingly named Zac1. In vitro Zac1 inhibited proliferation of tumor cells, as evidenced by measuring colony formation, growth rate and cloning in soft agar. In vivo Zac1 abrogated tumor formation in nude mice. The antiproliferative activity of Zac1 was due to induction of extensive apoptosis and of G1 arrest, which proceeded independently of retinoblastoma protein and of regulation of p21(WAF1/Cip1), p27Kip1, p57Kip2 and p16INK4a expression. Zac1-mediated apoptosis was unrelated to cell cycle phase and G1 arrest was independent of apoptosis, indicating separate control of apoptosis and cell cycle arrest. Zac1 is thus the first gene besides p53 which concurrently induces apoptosis and cell cycle arrest.  相似文献   

6.
7.
8.
A precise balance between proliferation and differentiation must be maintained during retinal development to obtain the correct proportion of each of the seven cell types found in the adult tissue. Cyclin kinase inhibitors can regulate cell cycle exit coincident with induction of differentiation programs during development. We have found that the p57(Kip2) cyclin kinase inhibitor is upregulated during G(1)/G(0) in a subset of retinal progenitor cells exiting the cell cycle between embryonic day 14.5 and 16.5 of mouse development. Retroviral mediated overexpression of p57(Kip2) in embryonic retinal progenitor cells led to premature cell cycle exit. Retinae from mice lacking p57(Kip2) exhibited inappropriate S-phase entry and apoptotic nuclei were found in the region where p57(Kip2) is normally expressed. Apoptosis precisely compensated for the inappropriate proliferation in the p57(Kip2)-deficient retinae to preserve the correct proportion of the major retinal cell types. Postnatally, p57(Kip2) was found to be expressed in a novel subpopulation of amacrine interneurons. At this stage, p57(Kip2 )did not regulate proliferation. However, perhaps reflecting its role during this late stage of development, animals lacking p57(Kip2) showed an alteration in amacrine subpopulations. p57(Kip2) is the first gene to be implicated as a regulator of amacrine subtype/subpopulation development. Consequently, we propose that p57(Kip2) has two roles during retinal development, acting first as a cyclin kinase inhibitor in mitotic progenitor cells, and then playing a distinct role in neuronal differentiation.  相似文献   

9.
Genomic imprinting is characterized by allele-specific expression of genes within chromosomal domains. Here we show, using fluorescence in situ hybridization (FISH) analysis, that the large chromosomal domain of the mouse distal chromosome 7 imprinting cluster, approximately 1 Mb in length between p57Kip2 and H19 genes, replicates asynchronously between the two alleles during S-phase. At the telomeric side of this domain, we found a transition from asynchronous replication at the imprinted p57Kip2 gene to synchronous replication at the Nap2 gene. Two-color FISH suggested that the paternal allele of this whole domain replicates earlier than its maternal allele. Treatment of the cells with a histone deacetylase inhibitor abolished this allele-specific feature accompanied with accelerated replication of the later-replicating allele at a domain level. Allele-specific asynchronous replication was observed even in ES cells. These results suggest that this imprinting cluster consists of a large replication domain which is already found at the early stage in development.  相似文献   

10.
11.
12.
13.
14.
15.
The molecular mechanisms that couple growth arrest and cell differentiation were examined during adipogenesis. Here, to understand the cyclin-dependent kinase inhibitor (CKI) genes involved in the progression of adipogenic differentiation, we examined changes in the protein and mRNA expression levels of CKI genes in vitro. During the onset of growth arrest associated with adipogenic differentiation, two independent families of CKI genes, p27Kip1 and p18INK4c, were significantly increased. The expressions of p27Kip1 and p18INK4c, regulated at the level of protein and mRNA accumulation, were directly coupled to adipogenic differentiation. This finding was supported by the inhibition of adipogenic differentiation caused by short interfering RNA (siRNA). In this study, we investigated the regulatory effects of transforming growth factor beta-1 (TGFβ-1) on CKI genes involved in adipogenic differentiation of bone marrow-derived human mesenchymal stem cells (hMSCs). Only the up-regulation of p18INK4c during adipogenic differentiation, and not that of the p27Kip1 gene was prevented by treatment with TGFβ-1, one of the factors that inhibit adipogenesis in vitro. This finding indicates a close correlation between adipogenic differentiation and p18INK4c induction in hMSCs. Thus, these data demonstrate a role for the differentiation-dependent cascade expression of cyclin-dependent kinase inhibitors in regulating adipogenic differentiation, thereby providing a molecular mechanism that couples growth arrest and differentiation.  相似文献   

16.
Cyclin-dependent kinase 5 (Cdk5) plays a key role in the development of the mammalian nervous system; it phosphorylates a number of targeted proteins involved in neuronal migration during development to synaptic activity in the mature nervous system. Its role in the initial stages of neuronal commitment and differentiation of neural stem cells (NSCs), however, is poorly understood. In this study, we show that Cdk5 phosphorylation of p27Kip1 at Thr187 is crucial to neural differentiation because 1) neurogenesis is specifically suppressed by transfection of p27Kip1 siRNA into Cdk5+/+ NSCs; 2) reduced neuronal differentiation in Cdk5−/− compared with Cdk5+/+ NSCs; 3) Cdk5+/+ NSCs, whose differentiation is inhibited by a nonphosphorylatable mutant, p27/Thr187A, are rescued by cotransfection of a phosphorylation-mimicking mutant, p27/Thr187D; and 4) transfection of mutant p27Kip1 (p27/187A) into Cdk5+/+ NSCs inhibits differentiation. These data suggest that Cdk5 regulates the neural differentiation of NSCs by phosphorylation of p27Kip1 at theThr187 site. Additional experiments exploring the role of Ser10 phosphorylation by Cdk5 suggest that together with Thr187 phosphorylation, Ser10 phosphorylation by Cdk5 promotes neurite outgrowth as neurons differentiate. Cdk5 phosphorylation of p27Kip1, a modular molecule, may regulate the progress of neuronal differentiation from cell cycle arrest through differentiation, neurite outgrowth, and migration.  相似文献   

17.
Lsh controls silencing of the imprinted Cdkn1c gene   总被引:2,自引:0,他引:2  
Epigenetic regulation, such as DNA methylation plays an important role in the control of imprinting. Lsh, a member of the SNF2 family of chromatin remodeling proteins, controls DNA methylation in mice. To investigate whether Lsh affects imprinting, we examined CpG methylation and allelic expression of individual genes in Lsh-deficient embryos. We report here that loss of Lsh specifically alters expression of the Cdkn1c gene (also known as p57(Kip2)) but does not interfere with maintenance of imprints at the H19, Igf2, Igf2r, Zac1 and Meg9 genes. The reactivation of the silenced paternal Cdkn1c allele correlates closely with a loss of CpG methylation at the 5' DMR at the Cdkn1c promoter, whereas KvDMR1 and DMRs of other imprinted genes were not significantly changed. Chromatin immunoprecipitations demonstrate a direct association of Lsh with the 5' DMR at the Cdkn1c promoter, but not with Kv DMR1 or other imprinted loci. These data suggest that methylation of the 5' DMR plays an important role in the imprinting of the Cdkn1c gene. Furthermore, it suggests that Lsh is not required for maintenance of imprinting marks in general, but is only crucial for imprinting at distinct genomic sites.  相似文献   

18.
19.
Imprinted genes are expressed from one allele according to their parent of origin, and many are essential to mammalian embryogenesis. Here we show that the epsilon-sarcoglycan gene (Sgce) and Zac1 (Lot1) are both paternally expressed imprinted genes. They were identified in a subtractive screen for imprinted genes using a cDNA library made from novel parthenogenetic and wild-type fibroblast lines. Sgce is a component of the dystrophin-sarcoglycan complex, Zac1 is a nuclear protein inducing growth arrest and/or apoptosis, and Zac1 is a potential tumor suppressor gene. Sgce and Zac1 are expressed predominantly from their paternal alleles in all adult mouse tissues, except that Zac1 is biallelic in the liver and Sgce is weakly expressed from the maternal allele in the brain. Sgce and Zac1 are broadly expressed in embryos, with Zac1 being highly expressed in the liver primordium, the umbilical region, and the neural tube. Sgce, however, is strongly expressed in the allantoic region on day 9.5 but becomes more widely expressed throughout the embryo by day 11.5. Sgce is located at the proximal end of mouse chromosome 6 and is a candidate gene for embryonic lethality associated with uniparental maternal inheritance of this region. Zac1 maps to the proximal region of chromosome 10, identifying a new imprinted locus in the mouse, homologous with human chromosome 6q24-q25. In humans, unipaternal disomy for this region is associated with fetal growth retardation and transient neonatal diabetes mellitus. In addition, loss of expression of ZAC has been described for a number of breast and ovarian carcinomas, suggesting that ZAC is a potential tumor suppressor gene.  相似文献   

20.
Genetic studies have uncovered many genes that are involved in the first steps of neuronal development inDrosophila.Less is known about the intermediate steps during which individual precursor cells follow either the neuronal pathway or the glial pathway. We report the identification of a novel bHLH gene,biparous,expressed in neuronal and glial precursors inDrosophila.Unlike most bHLH genes,biparousexpression continues to the final stages of neurogenesis in the embryo. Expression ofbiparousis not observed in end stage postmitotic neurons and precedes the expression ofrepo,a gene activated in later stages of glial differentiation. The bHLH domain is sufficiently different from previously described bHLH domains to imply a novel function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号