首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bacillus amyloliquefaciens FZB42 is a Gram-positive plant growth-promoting bacterium with an impressive capacity to synthesize nonribosomal secondary metabolites with antimicrobial activity. Here we report on a novel circular bacteriocin which is ribosomally synthesized by FZB42. The compound displayed high antibacterial activity against closely related Gram-positive bacteria. Transposon mutagenesis and subsequent site-specific mutagenesis combined with matrix-assisted laser desorption ionization–time of flight mass spectroscopy revealed that a cluster of six genes covering 4,490 bp was responsible for the production, modification, and export of and immunity to an antibacterial compound, here designated amylocyclicin, with a molecular mass of 6,381 Da. Peptide sequencing of the fragments obtained after tryptic digestion of the purified peptide revealed posttranslational cleavage of an N-terminal extension and head-to-tail circularization of the novel bacteriocin. Homology to other putative circular bacteriocins in related bacteria let us assume that this type of peptide is widespread among the Bacillus/Paenibacillus taxon.  相似文献   

2.
Carnocyclin A is a circular bacteriocin produced by Carnobacterium maltaromaticum UAL307. The carnocyclin A gene cluster cclBITCDAEFGH had been previously reported, and it was shown that transformation of C. maltaromaticum UAL26 with cclBITCDA resulted in immunity to, and low production of, carnocyclin A. Here, we demonstrate that full production of carnocyclin A in UAL26 transformants could be achieved when cclBITCDA was complemented with a second plasmid that contains cclEFGH. CclEFGH is a multicomponent ABC transporter that has similarity to As-48EFGH which is involved in the production of enterocin AS-48. Transformation of UAL26 containing cclBITCDA with deletion derivatives of cclEFGH did not increase the production of carnocyclin A, confirming the involvement of CclEFGH in bacteriocin production. Transformants of UAL26 containing cclEFGH showed a slight decrease in sensitivity to carnocyclin A, indicating that CclEFGH might also play a role in immunity.  相似文献   

3.
Previous studies of genes involved in the production of sakacin P by Lactobacillus sakei Lb674 revealed the presence of an inducible promoter downstream of the known spp gene clusters. We show here that this promoter drives the expression of an operon consisting of a bacteriocin gene (sppQ), a cognate immunity gene (spiQ), another gene with an unknown function (orf4), and a pseudoimmunity gene containing a frameshift mutation (orf5). The leader peptide of the new one-peptide bacteriocin sakacin Q contains consensus elements that are typical for so-called “double-glycine” leader peptides. The mature bacteriocin shows weak similarity to the BrcA peptide of the two-peptide bacteriocin brochocin C. Sakacin Q has an antimicrobial spectrum that differs from that of sakacin P, thus expanding the antimicrobial properties of the producer strain. The genes encoding sakacin Q and its cognate immunity protein showed strong translational coupling, which was investigated in detail by analyzing the properties of a series of β-glucuronidase fusions. Our results provide experimental evidence that production of the bacteriocin and production of the cognate immunity protein are tightly coregulated at the translational level.  相似文献   

4.
Enterocin A is a small, heat-stable, antilisterial bacteriocin produced by Enterococcus faecium DPC1146. The sequence of a 10,879-bp chromosomal region containing at least 12 open reading frames (ORFs), 7 of which are predicted to play a role in enterocin biosynthesis, is presented. The genes entA, entI, and entF encode the enterocin A prepeptide, the putative immunity protein, and the induction factor prepeptide, respectively. The deduced proteins EntK and EntR resemble the histidine kinase and response regulator proteins of two-component signal transducing systems of the AgrC-AgrA type. The predicted proteins EntT and EntD are homologous to ABC (ATP-binding cassette) transporters and accessory factors, respectively, of several other bacteriocin systems and to proteins implicated in the signal-sequence-independent export of Escherichia coli hemolysin A. Immediately downstream of the entT and entD genes are two ORFs, the product of one of which, ORF4, is very similar to the product of the yteI gene of Bacillus subtilis and to E. coli protease IV, a signal peptide peptidase known to be involved in outer membrane lipoprotein export. Another potential bacteriocin is encoded in the opposite direction to the other genes in the enterocin cluster. This putative bacteriocin-like peptide is similar to LafX, one of the components of the lactacin F complex. A deletion which included one of two direct repeats upstream of the entA gene abolished enterocin A activity, immunity, and ability to induce bacteriocin production. Transposon insertion upstream of the entF gene also had the same effect, but this mutant could be complemented by exogenously supplied induction factor. The putative EntI peptide was shown to be involved in the immunity to enterocin A. Cloning of a 10.5-kb amplicon comprising all predicted ORFs and regulatory regions resulted in heterologous production of enterocin A and induction factor in Enterococcus faecalis, while a four-gene construct (entAITD) under the control of a constitutive promoter resulted in heterologous enterocin A production in both E. faecalis and Lactococcus lactis.  相似文献   

5.
Listeria innocua 743 produces an inhibitory activity demonstrating broad-spectrum inhibition of Listeria monocytogenes isolates. Gel-electrophoretic analysis of culture supernatants indicated that two inhibitors with different molecular weights were produced by this strain. Insertion of Tn917 into a 2.9 Kb plasmid (pHC743) generated mutants with either an impaired ability or a loss in ability to produce one of the inhibitors. Sequence analysis of the transposon insertion regions revealed the presence of two continuous open reading frames, the first encoding a new pediocin-like bacteriocin (lisA) and the second encoding a protein homologous with genes involved in immunity toward other bacteriocins (lisB). Translation of the bacteriocin gene (lisA) initiates from a noncanonical start codon and encodes a 71-amino-acid prebacteriocin which lacked the double glycine leader peptidase processing site common in other type II bacteriocins. Alignment of the sequence with the processed N termini of related bacteriocins suggests that the mature bacteriocin consists of 43 amino acids, with a predicted molecular mass of 4,484 Da. Mutants containing insertions into lisA were sensitive to the inhibitor, indicating that lisAB forms a single operon and that lisB represents the immunity protein. Cloning of an amplicon containing the lisAB operon into Escherichia coli resulted in expression and export of the bacteriocin. This finding confirms that the phenotype is dependent on the structural and immunity gene only and that export of this bacteriocin is sec dependent. This is the first confirmation of bacteriocin production in a Listeria spp., and it is of interest that this bacteriocin is closely related to the pediocin family of bacteriocins produced by lactic acid bacteria.  相似文献   

6.
Carnocyclin A is a circular bacteriocin of 60 amino acids produced by Carnobacterium maltaromaticum UAL307. A region of 12 kb that contained the structural gene for carnocyclin A, cclA, was sequenced using a fosmid library, and 10 genes were identified that could be responsible for carnocyclin A production and immunity. Five of those genes, cclBITCD, were found upstream of cclA: one encodes a protein containing a conserved ATP-binding domain and four encode proteins with putative membrane-spanning domains. CclC shows homology with a family of membrane proteins that contain the domain of unknown function 95 (DUF95). Downstream of cclA four additional genes, cclEFGH, were identified that show similarity to the last four genes, as-48EFGH, of the enterocin AS-48 bacteriocin gene cluster. CclFGH shows sequence homology with As-48FGH. Transformation of C. maltaromaticum UAL26 with cclBITCDA resulted in production of carnocyclin A, indicating that these genes form the minimal requirement for the secretion of fully matured bacteriocin. cclI encodes for a small hydrophobic protein with a high pI, which are characteristic features of known immunity proteins for other circular bacteriocins. Indeed, cloning of cclI behind a constitutive promoter in UAL26 resulted in immunity although the level of resistance was lower than that of UAL26 containing cclBITCDA, indicating that CclI alone is not enough to confer full immunity to carnocyclin A.  相似文献   

7.
Lactococcus garvieae DCC43 produces a bacteriocin, garvicin ML (GarML), with a molecular mass of 6,004.2 Da. Data from de novo amino acid sequencing by tandem mass spectrometry and nucleotide sequencing by reverse genetics suggested that the bacteriocin is synthesized as a 63-amino-acid precursor with a 3-amino-acid leader peptide that is removed by cleavage. Subsequently, a covalent linkage between the N and C termini forms the mature version of this novel 60-amino-acid circular bacteriocin.  相似文献   

8.
Some species of ruminal bacteria are known to produce antimicrobial peptides, but the screening procedures have mostly been based on in vitro assays using standardized methods. Recent sequencing efforts have made available the genome sequences of hundreds of ruminal microorganisms. In this work, we performed genome mining of the complete and partial genome sequences of 224 ruminal bacteria and 5 ruminal archaea to determine the distribution and diversity of bacteriocin gene clusters. A total of 46 bacteriocin gene clusters were identified in 33 strains of ruminal bacteria. Twenty gene clusters were related to lanthipeptide biosynthesis, while 11 gene clusters were associated with sactipeptide production, 7 gene clusters were associated with class II bacteriocin production, and 8 gene clusters were associated with class III bacteriocin production. The frequency of strains whose genomes encode putative antimicrobial peptide precursors was 14.4%. Clusters related to the production of sactipeptides were identified for the first time among ruminal bacteria. BLAST analysis indicated that the majority of the gene clusters (88%) encoding putative lanthipeptides contained all the essential genes required for lanthipeptide biosynthesis. Most strains of Streptococcus (66.6%) harbored complete lanthipeptide gene clusters, in addition to an open reading frame encoding a putative class II bacteriocin. Albusin B-like proteins were found in 100% of the Ruminococcus albus strains screened in this study. The in silico analysis provided evidence of novel biosynthetic gene clusters in bacterial species not previously related to bacteriocin production, suggesting that the rumen microbiota represents an underexplored source of antimicrobial peptides.  相似文献   

9.
Enterocin I (ENTI) is a novel bacteriocin produced by Enterococcus faecium 6T1a, a strain originally isolated from a Spanish-style green olive fermentation. The bacteriocin is active against many olive spoilage and food-borne gram-positive pathogenic bacteria, including clostridia, propionibacteria, and Listeria monocytogenes. ENTI was purified to homogeneity by ammonium sulfate precipitation, binding to an SP-Sepharose fast-flow column, and phenyl-Sepharose CL-4B and C2/C18 reverse-phase chromatography. The purification procedure resulted in a final yield of 954% and a 170,000-fold increase in specific activity. The primary structure of ENTI was determined by amino acid and nucleotide sequencing. ENTI consists of 44 amino acids and does not show significant sequence similarity with any other previously described bacteriocin. Sequencing of the entI structural gene, which is located on the 23-kb plasmid pEF1 of E. faecium 6T1a, revealed the absence of a leader peptide at the N-terminal region of the gene product. A second open reading frame, ORF2, located downstream of entI, encodes a putative protein that is 72.7% identical to ENTI. entI and ORF2 appear to be cotranscribed, yielding an mRNA of ca. 0.35 kb. A gene encoding immunity to ENTI was not identified. However, curing experiments demonstrated that both enterocin production and immunity are conferred by pEF1.  相似文献   

10.
Nisin is an antimicrobial peptide produced by Lactococcus lactis. It has a long history of safe use, mainly in food production. This bacteriocin has been studied from many aspects of genetics, biosynthesis, immunity, regulation and mode of action. The strain Lac. lactis M78 has already been described in previous studies as a good nisin A producer with equally good potential to be used in food production. The main objective of the present study was to determine the complete nucleic acid sequence of the nisin A gene cluster from this strain. This is the first time that all 11 genes that form the nisin A gene cluster were sequenced. The obtained sequence (GenBank: HM219853) was compared to other known nucleic acid sequences of bacteriocin nisin. The results of the comparison showed certain differences in sequences that might influence the structure and function of proteins involved in nisin biosynthesis, immunity and regulation.  相似文献   

11.
A region of 12 kb flanking the structural gene of the cyclic antibacterial peptide circularin A of Clostridium beijerinckii ATCC 25752 was sequenced, and the putative proteins involved in the production and secretion of circularin A were identified. The genes are tightly organized in overlapping open reading frames. Heterologous expression of circularin A in Enterococcus faecalis was achieved, and five genes were identified as minimally required for bacteriocin production and secretion. Two of the putative proteins, CirB and CirC, are predicted to contain membrane-spanning domains, while CirD contains a highly conserved ATP-binding domain. Together with CirB and CirC, this ATP-binding protein is involved in the production of circularin A. The fifth gene, cirE, confers immunity towards circularin A when expressed in either Lactococcus lactis or E. faecalis and is needed in order to allow the bacteria to produce bacteriocin. Additional resistance against circularin A is conferred by the activity of the putative transporter consisting of CirB and CirD.  相似文献   

12.
Amongst 101 lactic acid bacteria isolated from meat and fish samples, strain CWBI-B1365, identified as Lactobacillus sakei, was found to produce the subclass IIa bacteriocin sakacin G. Partial sequencing of the gene involved in the biosynthetic pathways revealed an unusual gene organisation in that the accessory gene associated with bacteriocin transport did not occur immediately downstream of the gene encoding an ABC transporter, but upstream of the putative immunity gene and encoded on the opposite DNA strand. Sakacin G production was strongly regulated by pH, temperature and the carbon sources used in the growth medium, as well as the concentration of carbon and nitrogen sources. The condition of pH 5.5 and the temperature of 25°C appeared to be optimal for bacteriocin production. The use of sucrose during culturing and the fed batch addition of sucrose and meat extract greatly enhanced bacteriocin production.  相似文献   

13.
Amycolatopsis balhimycina produces the vancomycin-analogue balhimycin. The strain therefore serves as a model strain for glycopeptide antibiotic production. Previous characterisation of the balhimycin biosynthetic cluster had shown that the border sequences contained both, a putative 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (dahp), and a prephenate dehydrogenase (pdh) gene. In a metabolic engineering approach for increasing the precursor supply for balhimycin production, the dahp and pdh genes from the biosynthetic cluster were overexpressed both individually and together and the resulting strains were subjected to quantitative physiological characterisation. The constructed strains expressing an additional copy of the dahp gene and the strain carrying an extra copy of both dahp and pdh showed improved specific glycopeptide productivities by approximately a factor three, whereas the pdh overexpression strain showed a production profile similar to the wild type strain. In addition to the overexpression strains, corresponding deletion mutants, Δdahp and Δpdh, were constructed and characterised. Deletion of dahp resulted in significant reduction in balhimycin production whereas the Δpdh strain had production levels similar to the parent strain. Based on these results the relation between primary and secondary metabolism with regards to Dahp and Pdh is discussed.  相似文献   

14.
15.
Streptococcus thermophilus B59671 produces a bacteriocin with anti-pediococcal activity, but genes required for its production are not characterized. Genome sequencing of S. thermophilus has identified a genetic locus encoding a quorum sensing (QS) system that regulates production of class II bacteriocins. However, in strains possessing this gene cluster, production of bacteriocin like peptides (Blp) was only observed when excess pheromone was provided. PCR analysis revealed this strain possessed blpC, which encodes the 30-mer QS pheromone. To investigate if BlpC regulates bacteriocin production in S. thermophilus B59671, an integrative vector was used to replace blpC with a gene encoding for kanamycin resistance and the resulting mutant did not inhibit the growth of Pediococcus acidilactici. Constitutive expression of blpC from a shuttle vector restored the bacteriocin production, confirming the blp gene cluster is essential for bacteriocin activity in S. thermophilus B59671.  相似文献   

16.
Gassericin A, produced by Lactobacillus gasseri LA39, is a hydrophobic circular bacteriocin. The DNA region surrounding the gassericin A structural gene, gaaA, was sequenced, and seven open reading frames (ORFs) of 3.5 kbp (gaaBCADITE) were found with possible functions in gassericin A production, secretion, and immunity. The deduced products of the five consecutive ORFs gaaADITE have homology to those of genes involved in butyrivibriocin AR10 production, although the genetic arrangements are different in the two circular bacteriocin genes. GaaI is a small, positively charged hydrophobic peptide of 53 amino acids containing a putative transmembrane segment. Heterologous expression and homologous expression of GaaI in Lactococcus lactis subsp. cremoris MG1363 and L. gasseri JCM1131T, respectively, were studied. GaaI-expressing strains exhibited at least sevenfold-higher resistance to gassericin A than corresponding control strains, indicating that gaaI encodes an immunity peptide for gassericin A. Comparison of GaaI to peptides with similar characteristics found in the circular bacteriocin gene loci is discussed.Bacteriocins are antimicrobial peptides that act primarily against related bacterial species. The classification of bacteriocins remains controversial. Here, we use the classification of Maqueda et al. (30): class I (lantibiotics); class II (nonlantibiotics) with subclasses IIa (antilisteral pediocin-like bacteriocins), IIb (two-peptide bacteriocins), and IIc (leaderless bacteriocins); class III (large heat-labile bacteriocins); and class IV (circular bacteriocins linked at the N- and C-terminal amino acids).Nine class IV circular bacteriocins have been reported to date. They can be further divided into two major groups by using their primary structures, biochemical characteristics, and genetic arrangements. One group is the family of enterocin AS-48 (32), the first circular bacteriocin described (in 1994), which includes circularin A (25) and uberolysin (40). The other group is the family of gassericin A (19, 21), the second bacteriocin found (in 1998), which includes acidocin B (28), reutericin 6 (with a primary structure 100% identical to that of gassericin A) (22, 23), butyrivibriocin AR10 (17), and carnocyclin A, from Carnobacterium maltaromaticum UAL307 (33). The lantibiotic-like subtilosin A produced by Bacillus subtilis subsp. subtilis strain 168 (24) is an orphan member of the class IV bacteriocins. The gassericin A family of bacteriocins have been isolated from various bacterial species in several countries, suggesting the bacteriocin genes may be associated with transferable genetic elements.The bacteriocins of lactic acid bacteria (LAB) and bacteriocin-producing LAB strains isolated from foods are promising food preservative candidates, and strains of human origin are expected to be probiotics that could help to prevent the growth of harmful bacteria in food and the human intestine. Lactobacillus gasseri belongs to the Lactobacillus acidophilus group of LAB, which are natural inhabitants of the human intestinal tract (35), and many L. gasseri strains have been shown to produce bacteriocins (16, 20). Gassericin A was produced by L. gasseri LA39 isolated from the feces of a human infant; it has bactericidal activity against the food-borne pathogens Listeria monocytogenes, Bacillus cereus, and Staphylococcus aureus (16). Recently, using proteose peptone, some strains of L. gasseri containing LA39 were successfully cultured in reconstituted skim milk and cheese whey, where L. gasseri LA39 produced gassericin A; these low-cost, safe media could be used to improve the safety of biopreservation (1). Gassericin A has been purified and characterized, and its structural gene (gaaA) has been cloned and sequenced (21, 22). Determination of the complete chemical structure of gassericin A showed that the bacteriocin belongs to class IV and consists of 58 amino acid residues linked at the N and C termini (19). Little is known about the mechanisms of secretion and circularization of gassericin A and immunity to the circular bacteriocin.Here, we sequenced six genes surrounding gaaA thought to be related to production of and immunity to gassericin A and examined the homologous and heterologous expression of a small hydrophobic peptide, GaaI; we found that gaaI is an immunity gene providing protection against gassericin A.  相似文献   

17.
A collection of propionibacteria was screened for bacteriocin production. A new bacteriocin named propionicin T1 was isolated from two strains of Propionibacterium thoenii. This bacteriocin shows no sequence similarity to other bacteriocins. Propionicin T1 was active against all strains of Propionibacterium acidipropionici, Propionibacterium thoenii, and Propionibacterium jensenii tested and also against Lactobacillus sake NCDO 2714 but showed no activity against Propionibacterium freudenreichii. The bacteriocin was purified, and the N-terminal part of the peptide was determined with amino acid sequencing. The corresponding gene pctA was sequenced, and this revealed that propionicin T1 is produced as a prebacteriocin of 96 amino acids with a typical sec leader, which is processed to give a mature bacteriocin of 65 amino acids. An open reading frame encoding a protein of 424 amino acids was found 68 nucleotides downstream the stop codon of pctA. The N-terminal part of this putative protein shows strong similarity with the ATP-binding cassette of prokaryotic and eukaryotic ABC transporters, and this protein may be involved in self-protection against propionicin T1. Propionicin T1 is the first bacteriocin from propionibacteria that has been isolated and further characterized at the molecular level.  相似文献   

18.
The blp(St) cluster of Streptococcus thermophilus LMD-9 was recently shown to contain all the genetic information required for the production of bacteriocins active against other S. thermophilus strains. In this study, we further investigated the antimicrobial activity of S. thermophilus LMD-9 by testing the susceptibility of 31 bacterial species (87 strains). We showed that LMD-9 displays an inhibitory spectrum targeted toward related gram-positive bacteria, including pathogens such as Listeria monocytogenes. Using deletion mutants, we investigated the contribution of the three putative bacteriocin-encoding operons blpD(St)-orf2, blpU(St)-orf3, and blpE(St)-blpF(St) (bac(St) operons) and of the blpG(St) gene, which encodes a putative modification protein, to the inhibitory spectrum and immunity of strain LMD-9. Our results present evidence that the blp(St) locus encodes a multipeptide bacteriocin system called thermophilin 9. Among the four class II bacteriocin-like peptides encoded within the bac(St) operons, BlpD(St) alone was sufficient to inhibit the growth of most thermophilin 9-sensitive species. The blpD(St) gene forms an operon with its associated immunity gene(s), and this functional bacteriocin/immunity module could easily be transferred to Lactococcus lactis. The remaining three Bac(St) peptides, BlpU(St), BlpE(St), and BlpF(St), confer poor antimicrobial activity but act as enhancers of the antagonistic activity of thermophilin 9 by an unknown mechanism. The blpG(St) gene was also shown to be specifically required for the antilisteria activity of thermophilin 9, since its deletion abolished the sensitivities of most Listeria species. By complementation of the motility deficiency of Escherichia coli dsbA, we showed that blpG(St) encodes a functional thiol-disulfide oxidase, suggesting an important role for disulfide bridges within thermophilin 9.  相似文献   

19.

Background

One of the most important global pathogens infecting all age groups is Streptococcus pneumoniae (the ‘pneumococcus’). Pneumococci reside in the paediatric nasopharynx, where they compete for space and resources, and one competition strategy is to produce a bacteriocin (antimicrobial peptide or protein) to attack other bacteria and an immunity protein to protect against self-destruction. We analysed a collection of 336 diverse pneumococcal genomes dating from 1916 onwards, identified bacteriocin cassettes, detailed their genetic composition and sequence diversity, and evaluated the data in the context of the pneumococcal population structure.

Results

We found that all genomes maintained a blp bacteriocin cassette and we identified several novel blp cassettes and genes. The composition of the ‘bacteriocin/immunity region’ of the blp cassette was highly variable: one cassette possessed six bacteriocin genes and eight putative immunity genes, whereas another cassette had only one of each. Both widely-distributed and highly clonal blp cassettes were identified. Most surprisingly, one-third of pneumococcal genomes also possessed a cassette encoding a novel circular bacteriocin that we called pneumocyclicin, which shared a similar genetic organisation to well-characterised circular bacteriocin cassettes in other bacterial species. Pneumocyclicin cassettes were mainly of one genetic cluster and largely found among seven major pneumococcal clonal complexes.

Conclusions

These detailed genomic analyses revealed a novel pneumocyclicin cassette and a wide variety of blp bacteriocin cassettes, suggesting that competition in the nasopharynx is a complex biological phenomenon.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1729-4) contains supplementary material, which is available to authorized users.  相似文献   

20.
Enterocin A is a small, heat-stable, antilisterial bacteriocin produced by Enterococcus faecium DPC1146. The sequence of a 10, 879-bp chromosomal region containing at least 12 open reading frames (ORFs), 7 of which are predicted to play a role in enterocin biosynthesis, is presented. The genes entA, entI, and entF encode the enterocin A prepeptide, the putative immunity protein, and the induction factor prepeptide, respectively. The deduced proteins EntK and EntR resemble the histidine kinase and response regulator proteins of two-component signal transducing systems of the AgrC-AgrA type. The predicted proteins EntT and EntD are homologous to ABC (ATP-binding cassette) transporters and accessory factors, respectively, of several other bacteriocin systems and to proteins implicated in the signal-sequence-independent export of Escherichia coli hemolysin A. Immediately downstream of the entT and entD genes are two ORFs, the product of one of which, ORF4, is very similar to the product of the yteI gene of Bacillus subtilis and to E. coli protease IV, a signal peptide peptidase known to be involved in outer membrane lipoprotein export. Another potential bacteriocin is encoded in the opposite direction to the other genes in the enterocin cluster. This putative bacteriocin-like peptide is similar to LafX, one of the components of the lactacin F complex. A deletion which included one of two direct repeats upstream of the entA gene abolished enterocin A activity, immunity, and ability to induce bacteriocin production. Transposon insertion upstream of the entF gene also had the same effect, but this mutant could be complemented by exogenously supplied induction factor. The putative EntI peptide was shown to be involved in the immunity to enterocin A. Cloning of a 10.5-kb amplicon comprising all predicted ORFs and regulatory regions resulted in heterologous production of enterocin A and induction factor in Enterococcus faecalis, while a four-gene construct (entAITD) under the control of a constitutive promoter resulted in heterologous enterocin A production in both E. faecalis and Lactococcus lactis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号