首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deleted mitochondrial DNA (mtDNA) was accumulated in the parkinsonian striatum, but the same deleted mtDNA was also detectable in the control striatum when cycles of polymerase chain reaction were increased. To discriminate between these pathological and physiological conditions, we quantitatively analyzed the proportion of deleted mtDNA to normal mtDNA by measuring the incorporation of alpha-[32P]deoxycytosine triphosphate into mtDNA fragments by using a laser image analyzer. To estimate the molar ratio of the deleted mtDNA to normal mtDNA, the radioactivity was normalized by each fragment size. By plotting logarithms of normalized radioactivities against PCR amplification cycles, straight lines were obtained with different slopes. By extrapolation of the line to the zero amplification, the proportion of mutant mtDNA to normal mtDNA in the original sample from the parkinsonian striatum was estimated to be ca. 5%, which was at least ten times higher than the proportion of ca. 0.3% in the control striatum. These results indicate that phenotype of the mutant mtDNA as Parkinson's disease is expressed when the proportion of deleted mtDNA to normal mtDNA exceeds a threshold of ten times higher value than in the normal subject.  相似文献   

2.
Several types of deletions in mitochondrial DNA (mtDNA) have been recetly identified in various tissues of old humans. In order to determine whether there are differences in the incidence and proportion of deleted mtDNAs in different tissues during human ageing, we examined tha 4,977 bp deletion in mtDNA of various tissues from subjects of different ages. Total DNA was extracted from each of the biopsied tissues and was serially diluted by two-fold with distilled water. A 533 bp DNA fragment was amplified by PCR from total mtDNA using a pair of primers L3304-3323 and H3817-3836, and another 524 bp PCR product was amplified from 4,977 bp deleted mtDNA by identical conditions using another pair of primers L8150-8166 and H13631-13650. The maximum dilution fold of each sample that still allowed the ethidium bromide-stained PCR product (533 bp or 524 bp) in the agarose gel to be visible under UV light illumination was taken as the relative abundance of the mtDNA (wild-type or mutant) in the original sample. By this method, we were able to determine the proportion of deleted mtDNA in human tissues. We found that the 4,977 bp deletion started to appear in the second and third decades of life in human muscle and liver tissues. But the deletion was not detectable in the testis until the age of 60 years. Moreover, the proportion of deleted mtDNA varied greatly in different tissues. Among the tissues examined, muscle was found to harbor higher proportin of deleted mtDNA than the other tissues. The average proportion of the 4,977 bp depleted mtDNA of the muscle from subjects over 70 years old was approximately 0.06%, and that of the liver and the testis was 0.0076% and 0.05%, respectively. These findings suggest that the frequency and proportion of the deleted mtDNA in human tissues increase with age and that the mtDNA deletions occur more frequently and abundantly in high energy-demanding tissues during the ageing process of the human.  相似文献   

3.
End-stage renal disease (ESRD) is associated with enhanced oxidative stress. This disease state provides a unique system for investigating the deleterious effect of exogenous sources of free radicals and reactive oxygen species (ROS) on mitochondrial DNA (mtDNA). To test the hypothesis that uremic milieu might cause more severe damage to mtDNA, we investigated the prevalence and abundance of mtDNA deletions in the skeletal muscles of ESRD patients. The results showed that the frequencies of occurrence of the 4977 bp and 7436 bp deletions of mtDNA in the muscle tissues of the older ESRD patients were higher than those of the younger patients. The frequency of occurrence of the 4977 bp-deleted mtDNA in the muscle was 33.3% for the patients in the age group of < 40 years, 66.6% in the 41-60-year-old group, 100% in the 61-80-year-old group, and 100% in patients >80 years of age, respectively. Only 22% of the normal aged controls carried the 4977 bp mtDNA deletion, whereas 77% (17/22) of the ESRD patients exhibited the mtDNA deletion. Using a semiquantitative PCR method, we determined the proportion of the 4977 bp-deleted mtDNA from the muscles that had been confirmed to harbor the deletion. We found that the proportions of the 4977 bp-deleted mtDNA in the muscle were significantly higher than those of the aged matched controls. Using long-range PCR techniques, a distinctive array of mtDNA deletions was demonstrated in the muscle of uremic patients. In summary, we found diverse and multiple mtDNA deletions in the skeletal muscles of ESRD patients. These deletions are more prevalent and abundant in ESRD patients than those found in normal populations. Accumulation of uremic toxins and impaired free radical scavenging systems may be responsible for the increased oxidative stress in ESRD patients. Such stress may result in oxidative damage and aging-associated mutation of the mitochondrial genome.  相似文献   

4.
5.
We have demonstrated that myocardial mitochondrial DNA (mtDNA) with a 7,436 base-pair deletion existed in all subjects that were over 70 years old. Since each mitochondrion has two or three copies of its own DNA, quantitative analysis is required for the evaluation of the role of mtDNA with deletions in the age-related deterioration of cardiac performance. For this purpose, the kinetic polymerase chain reaction (PCR) method developed in our laboratory was used in this investigation to determine myocardial mtDNA with this 7,436 base-pair deletion in human cadavers of various ages. The mtDNA population with this deletion increased exponentially with age [log f (% of deleted mtDNA) = -3.136 + 0.0454 x age, r = 0.95, P less than 0.01)], and was estimated at 3% and 9% in subjects of age 80 and 90, respectively. The deleted portion encodes 7 subunits of the mitochondrial ATP production system, and a population of mtDNA with this deletion over a certain threshold might induce a significant deterioration of cardiac energy metabolism. Cardiac function is known to deteriorate with age, and an increase in the population of mtDNA with deletion is likely to be an important contributing factor to aged heart (presbycardia).  相似文献   

6.
Lee HC  Yin PH  Yu TN  Chang YD  Hsu WC  Kao SY  Chi CW  Liu TY  Wei YH 《Mutation research》2001,493(1-2):67-74
Accumulation of mitochondrial DNA (mtDNA) mutations in human tissues has been associated with intrinsic aging and environmental insult. Recently, mtDNA mutations have been detected in various tumors, including head and neck tumors. However, the factors affecting the occurrence and accumulation of mtDNA deletions in tumor tissues are poorly understood. In Taiwan, betel quid chewing is a major risk factor for oral cancer. Using polymerase chain reaction (PCR) techniques, we examined large-scale deletions of mtDNA in 53 pairs of tumor and non-tumor oral tissues from the patients with or without betel quid chewing history. The results revealed that irrespective of the history of betel quid chewing, the incidences of the 4977bp deletion and other deletions of mtDNA were lower in the tumor portion as compared with the non-tumor portion. The average proportions of the 4977bp deleted mtDNA in the tumor tissues of the betel quid chewers and non-betel quid chewers were 13- and 5-fold, respectively, lower than those in the corresponding non-tumor tissues. Moreover, the average proportion of 4977bp deleted mtDNA was significantly higher (P<0.05) in the non-tumor oral tissues of the patients with betel quid chewing history than that of the patients without the history of betel quid chewing. These results suggest that betel quid chewing may increase mtDNA mutation in human oral tissues and that accumulation of mtDNA deletions and subsequent cytoplasmic segregation of these mutations during cell division could be an important contributor to the early phase of oral carcinogenesis.  相似文献   

7.
 Myoblast cultures were established from muscle biopsies of two patients harboring heteroplasmic mitochondrial (mt) DNA deletions. The accumulation kinetics of the deleted mtDNA was followed during myoblast to myotube differentiation. The percent- age of deleted mtDNA was determined by quantitative PCR in myoblasts, myotubes, and muscle biopsies. The deleted form accounted for 65% of the mtDNA present in a muscle biopsy from a patient harboring a 5.6-kb deletion. The percentage of deleted mtDNA was 1.2% in myoblasts and increased progressively after differentiation, up to 12% at 21 days after the commitment time. In a second patient harboring a 2.8-kb deletion, the percentage of deleted mtDNA increased much more slowly: from 0.07% in myoblasts to 0.21% after 22 days of differentiation, as compared with 45% in the muscle biopsy. Thus, a three- and ten-fold increase, respectively, in the fraction of deleted mtDNA occurred during the differentiation of myoblasts to myotubes from the two patients. The faster accumulation of deleted mtDNA in the first patient’s cells was linked to an earlier myoblast to myotube differentiation, suggesting that the level of deleted mtDNA is inversely related to the rate of cell proliferation. Received: 16 April 1996/Accepted: 29 July 1996  相似文献   

8.
The 4977bp deletion of mitochondrial DNA (mtDNA) is known to accumulate with increasing age in post mitotic tissues. Recently, studies came out detecting this specific alteration also in fast replicating cells, e.g. in blood or skin tissue, often in correlation to specific diseases or -- specifically in skin -- external stressors such as UV radiation. In this study, we investigated mitochondrial mutagenesis in 69 patients with a chronic alcoholic disease and 46 age matched controls with a moderate drinking behavior. Two different fragments, specific for total and for deleted mtDNA (dmtDNA) were amplified in a duplex-PCR. A subsequent fragment analysis was performed and for relative quantification, the quotient of the peak areas of amplification products specific for deleted and total mtDNA was determined. Additionally, a real time PCR was performed to quantify mtDNA copy number. The relative amount of 4977bp deleted mtDNA in alcoholics was significantly increased compared to controls. On the other hand, no difference regarding the mtDNA/nuclear DNA ratio in both investigated groups was detected. Additionally, no age dependence could be found nor in alcoholics, neither in the control group. These findings indicate that mtDNA mutagenesis in blood can be influenced by stressors such as alcohol. Ethanol seems to be a significant factor to alter mitochondrial DNA in blood and might be an additional contributor for the cellular aging process.  相似文献   

9.
We investigated the presence and potential role of mitochondrial DNA (mtDNA) deletion mutations in adult cardiac stem cells. Cardiac side population (SP) cells were isolated from 12-week-old mice. Standard polymerase chain reaction (PCR) was used to screen for the presence of mtDNA deletion mutations in (a) freshly isolated SP cells and (b) SP cells cultured to passage 10. When present, the abundance of mtDNA deletion mutation was analyzed in single cell colonies. The effect of different levels of deletion mutations on SP cell growth and differentiation was determined. MtDNA deletion mutations were found in both freshly isolated and cultured cells from 12-week-old mice. While there was no significant difference in the number of single cell colonies with mtDNA deletion mutations from any of the groups mentioned above, the abundance of mtDNA deletion mutations was significantly higher in the cultured cells, as determined by quantitative PCR. Within a single clonal cell population, the detectable mtDNA deletion mutations were the same in all cells and unique when compared to deletions of other colonies. We also found that cells harboring high levels of mtDNA deletion mutations (i.e. where deleted mtDNA comprised more than 60% of total mtDNA) had slower proliferation rates and decreased differentiation capacities. Screening cultured adult stem cells for mtDNA deletion mutations as a routine assessment will benefit the biomedical application of adult stem cells.  相似文献   

10.
Large mtDNA deletions in mouse brain and spleen cells, induced by X-radiation at doses of 2 and 5 Gy were studied within four weeks after the exposure of animals to X-rays. Variations in the content of extra-cellular deleted mtDNA were examined in the blood plasma of mice irradiated with 5 Gy in the same postir-radiation times. Ionizing radiation was shown to effectively induce large mtDNA deletions at the doses chosen. The level of deletion mtDNA was dependent on dose and postirradiation time.  相似文献   

11.
We describe an accurate procedure for a rapid diagnosis of heteroplasmic mtDNA deletions based on the polymerase chain reaction (PCR). For a selective amplification of deleted mtDNA across the breakpoints of the deletion, we used seven combinations of primers surrounding the most common deleted region between the two origins of mtDNA replication. This procedure was performed on muscle biopsies of twenty patients harboring a single mtDNA deletion and one patient with multiple mtDNA deletions. The results were compared with Southern-blotting analysis. We conclude that this PCR procedure is a sensitive and convenient screening method for the detection of mtDNA deletions. (Mol Cell Biochem 174: 221–225, 1997)  相似文献   

12.
Atrial fibrillation (AF) is the most common cause of arrhythmia and is an aging-related disease encountered in clinical practice. The electrophysiological remolding with Ca(2+) overloading and cellular structure changes were found in cardiomyocytes of AF patients. In previous studies, increased oxidative stress and oxidative damage was found in cardiomyocytes during the ischemia/reperfusion injury. Besides, mitochondrial DNA (mtDNA) deletion and mtDNA proliferation occur frequently in affected tissues of patients with certain degenerative diseases and during aging of the human. However, it remains unclear whether high oxidative stress and alteration of mtDNA play a role in the pathophysiology of AF. In this study, we first screened for large-scale deletions of mtDNA in the atrial muscle of AF patients by long-range polymerase chain reaction (PCR). The results showed that large-scale deletions between nucleotide positions 7900 and 16500 of mtDNA occurred at a high frequency. Among them, the 4977 bp deletion was the most frequent and abundant one, and the mean proportion of mtDNA with the 4977 bp deletion in the atrial muscle of the patients with AF was 3.75-fold higher than that of the patients without AF (p <.005). Furthermore, quantitative PCR was performed to evaluate lesions in mtDNA caused by oxidative damage. We found that the degree of mtDNA damage in the patients with AF was greater than that of the patients without AF (3.29 vs.1.60 per 10 kb, p <.0005). The 8-OHdG, which is one of the most common products of oxidative damage to DNA, was also found at a higher frequency in mtDNA of patients with AF as compared with those without AF. In addition, the mtDNA content was found to increase significantly in the patients with AF (p =.0051). The level of mtDNA lesion and the mtDNA content was positively correlated (r = 0.44). These results suggest that oxidative injury and deletion of mtDNA in cardiac muscle are increased in the patients with AF, which may contribute to the impairment of bioenergetic function of mitochondria and induction of the oxidative vicious cycle involved in the pathogenesis of atrial myopathy in AF.  相似文献   

13.
Bromocriptine, a dopamine agonist, is commonly used in combination with levodopa for the treatment of Parkinson's disease (PD). To investigate the theoretical basis of such combination therapy, we examined the effects of bromocriptine administered alone or in combination with levodopa on dopamine turnover in the striatum of hemi-parkinsonism rats. The parkinsonian striatum showed a 3.4-fold increase of dopamine turnover relative to the control striatum, as often observed in the brain of PD patients. A 7-day course of levodopa therapy markedly increased dopamine turnover in the parkinsonian striatum (53-fold of control level) than in the control striatum (5-fold of the control level). However, bromocriptine specifically and markedly suppressed the levodopa-induced abnormal activation of dopamine turnover in the parkinsonian striatum. Our findings explain the pharmacological basis for the introduction of bromocriptine during long-term levodopa therapy.  相似文献   

14.
Kearns-Sayre syndrome is one of the neurological diseases caused by a defect in the energy-producing system of mitochondria. Keams-Sayre is known to be associated with a deletion in the mitochondrial genome and is usually detected in muscle biopsies of the patients. In this study, we report the molecular lesion of mitochondrial DNA (mtDNA) in four Thai patients admitted to hospital with encephalomyopathies. The 3.5-kb deletion of mtDNA was detected by Southern analysis, mapped by amplification with five primer pairs covering almost the total mitochondrial genome, and confirmed by PCR primer shift analysis. The deleted position was localized to nt 10208/13765 or nt 10204/13761 spanning the coding area of subunits 3 (ND3), 4L (ND4L), 4 (ND4), and 5 (ND5) of respiratory chain enzyme complex I and the tRNA genes for histidine, serine, leucine, and arginine. The sequence flanking the deletion was a 4-bp repeat of TCCC. All four patients have exactly the same 3558-bp mtDNA deletion; this is the only deleted position in their mtDNA but is different from those reported in the literature. The deletion seems to be found only in Thai patients, although they present with different clinical manifestations and none of them is not related.  相似文献   

15.
Mitochondrial DNA alterations as ageing-associated molecular events.   总被引:7,自引:0,他引:7  
Y H Wei 《Mutation research》1992,275(3-6):145-155
Mitochondrial DNA (mtDNA) is a naked double-stranded circular extrachromosomal genetic element continuously exposed to the matrix that contains great amounts of reactive oxygen species and free radicals. The age-dependent decline in the capability and capacity of mitochondria to dispose these oxy-radicals will render mtDNA more vulnerable to mutations during the ageing process. During the past 3 years, more than 10 different types of deletions have been identified in the mtDNA of various tissues of old humans. Some of them were found only in a certain tissue but some others appeared in more than one organ or tissue. The 4977-bp deletion is the most prevalent and abundant one among these deletions. Skeletal muscle is the target tissue of most ageing-associated mtDNA deletions and has often been found to carry multiple deletions. The onset age of the various deletions in mtDNA varies greatly with individual and type of the deletion. The 4977-bp deletion has been independently demonstrated to occur in the mtDNA of various tissues of the human in the early third decade of life. However, the 7436-bp deletion was only detected in the heart mtDNA of human subjects in their late thirties. The others appeared only in older humans over 40 years old. No apparent sex difference was found in the onset age of these ageing-associated mtDNA deletions. The various ageing-associated deletions could be classified into two groups. Most of the deletions belong to the first group, in which the 5'- and 3'-end breakpoints of the deletion are flanked by 4-bp or longer direct repeats. The deletion in the second group occurs less frequently and shows no distinct repeat sequences flanking the deletion sites. These two groups of mtDNA deletions may occur by different mechanisms. The first group is most probably caused by internal recombination or slippage mispairing during replication of mtDNA by the D-loop mechanism. The deleted mtDNA and the deleted DNA fragment may be further degraded or escape from the mitochondria and get translocated into the nucleus. The latter route has been substantiated by many observations of inserted mtDNA sequences in the nuclear DNA. Thus, the fragments of migrating mtDNA may change the information content and expression level of certain nuclear genes and thereby promote the ageing process or cause cancer. Similar ageing-associated alterations of mtDNA have also been observed in aged animals and plants. I suggest that mtDNA deletions and other mutations to be discovered are molecular events generally associated with the ageing process.  相似文献   

16.
An apparently identical deletion of 4.977 bp in length (position 8,483-13,459) was detectable in the mitochondrial DNA from skeletal muscle, heart muscle, kidney, and liver of a patient with Kearns-Sayre syndrome. The proportion of deleted genome varied from 60% for the skeletal muscle to 15% for heart muscle and kidney, and was below 5% in the liver. The mtDNA heteroplasmy of the liver was only detectable after amplification by PCR. In skeletal and heart muscle histochemical and immunocytochemical findings concerning cytochrome c oxidase were in good correlation with the proportion of deleted mitochondrial DNA.  相似文献   

17.
Yui R  Matsuura ET 《Mutation research》2006,594(1-2):155-161
Cumulative damage due to reactive oxygen species (ROS) in mitochondria, especially in mitochondrial DNA (mtDNA), would result in a decrease in mitochondrial respiratory function and contributes to the age-related decline in the physiological functioning of organisms. Previously, we reported the tissue-specific accumulation of deleted mtDNA with age in Drosophila melanogaster. In the present study, to understand the mechanism by which mtDNA deletion is generated with age, nucleotide sequences of deleted mtDNA were determined. Consequently, 33 different sequences each containing a deletion were obtained from flies that were more than 55-day-old. Most of the deletions were found to be flanked by short direct repeats. The present results, together with those from other animals, suggest that there is a common mechanism generating mtDNA deletions through direct repeats.  相似文献   

18.
The purpose of this study was to determine the relationship between mitochondrial DNA (mtDNA) deletions, mtDNA content and aging in rhesus monkeys. Using 2 sets of specific primers, we amplified an 8 kb mtDNA fragment covering a common 5.7 kb deletion and the entire 16.5 kb mitochondrial genome in the brain and buffy-coats of young and aged monkeys. We studied a total of 66 DNA samples: 39 were prepared from a buffy-coat and 27 were prepared from occipital cortex tissues. The mtDNA data were assessed using a permutation test to identify differences in mtDNA, in the different monkey groups. Using real-time RT-PCR strategy, we also assessed both mtDNA and nuclear DNA levels for young, aged and male and female monkeys. We found a 5.7 kb mtDNA deletion in 81.8% (54 of 66) of the total tested samples. In the young group of buffy-coat DNA, we found 5.7 kb deletions in 7 of 17 (41%), and in the aged group, we found 5.7 kb deletions in 12 of 22 (54%), suggesting that the prevalence of mtDNA deletions is related to age. We found decreased mRNA levels of mtDNA in aged monkeys relative to young monkeys. The increases in mtDNA deletions and mtDNA levels in aged rhesus monkeys suggest that damaged DNA accumulates as rhesus monkeys age and these altered mtDNA changes may have physiological relevance to compensate decreased mitochondrial function.  相似文献   

19.

Background

Reduced cell spreading is a prominent feature of aged dermal fibroblasts in human skin in vivo. Mitochondrial DNA (mtDNA) common deletion has been reported to play a role in the human aging process, however the relationship between age-related reduced cell spreading and mtDNA common deletion has not yet been reported.

Results

To examine mtDNA common deletion in the dermis of aged human skin, the epidermis was removed from full-thickness human skin samples using cryostat. mtDNA common deletion was significantly elevated in the dermis of both naturally aged and photoaged human skin in vivo. To examine the relationship between age-related reduced cell spreading and mtDNA common deletion, we modulated the shape of dermal fibroblasts by disrupting the actin cytoskeleton. Reduced cell spreading was associated with a higher level of mtDNA common deletion and was also accompanied by elevated levels of endogenous reactive oxygen species (ROS). Boosting cellular antioxidant capacity by using antioxidants was found to be protective against mtDNA common deletion associated with reduced cell spreading.

Conclusion

mtDNA common deletion is highly prevalent in the dermis of both naturally aged and photoaged human skin in vivo. mtDNA common deletion in response to reduced cell spreading is mediated, at least in part, by elevated oxidative stress in human dermal fibroblasts. These data extend current understanding of the mitochondrial theory of aging by identifying the connection between mtDNA common deletion and age-related reduction of cell spreading.  相似文献   

20.
Abundant evidence has been gathered to suggest that mitochondrial DNA (mtDNA) sustains many more mutations and greater oxidative damage than does nuclear DNA in human tissues. Uremic patients are subject to a state of enhanced oxidative stress due to excess production of oxidants and a defective antioxidant defense system. This study was conducted to investigate mtDNA mutations and oxidative damage in skeletal muscle of patients with chronic uremia. Results showed that large-scale deletions between nucleotide position (np) 7,900 and 16,300 of mtDNA occurred at a high frequency in muscle of uremic patients. Among them, the 4,977-bp deletion (mtDNA4977) was the most frequent and most abundant large-scale mtDNA deletion in uremic skeletal muscle. The proportion of mtDNA4977 was found to correlate positively with the level of 8-hydroxy 2-deoxyguanosine (8-OHdG) in the total DNA of skeletal muscle (r=0.62, p<0.05). Using long-range PCR and DNA sequencing, we identified and characterized multiple deletions of mtDNA in skeletal muscle of 16 of 19 uremic patients examined. The 8,041-bp deletion, which occurred between np 8035 and 16,075, was flanked by a 5-bp direct repeat of 5-CCCAT-3. Some of the deletions were found in more than 1 patient. On the other hand, we found that the mean 8-OHdG/105 dG ratio in the total cellular DNA of muscle of uremic patients was significantly higher than that of the controls (182.7 ± 63.6 vs. 50.9 ± 21.5, p=0.05). In addition, the mean 8-OHdG/105 dG ratio in muscle mtDNA of uremic patients was significantly higher than that in nuclear DNA (344.0 ± 56.9 vs. 146.3 ± 95.8, p=0.001). Moreover, we found that the average content of lipid peroxides in mitochondrial membranes of skeletal muscle of uremic patients was significantly higher than that of age-matched healthy subjects (23.76 ± 6.06 vs. 7.67 ± 0.95 nmol/mg protein; p<0.05). The average content of protein carbonyls in the mitochondrial membranes prepared from uremic skeletal muscles was significantly higher than that in normal controls (24.90 ± 4.00 vs. 14.48 ± 1.13 nmol/mg protein; p<0.05). Taken together, these findings suggest that chronic uremia leads to mtDNA mutations together with enhanced oxidative damage to DNA, lipids, and proteins of mitochondria in skeletal muscle, which may contribute to the impairment of mitochondrial bioenergetic function and to skeletal myopathy commonly seen in uremic patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号