首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conformations of double-stranded d(GGAAATTTCC) x 2, d(GGTTTAAACC) x 2, d(CGCAAAAAAGCG)d(CGCTTTTTTGCG) and d(GCATTTTGAAACG)d(CGTTTCAAAATGC) have been studied by NMR spectroscopy. Analyses of cross peaks in NOESY spectra between the H2 of an adenine and the H1' of a deoxyribose in the 3'-neighbouring residue on the complementary strand revealed that the minor groove of the oligo(dA) tract is compressed gradually from 5' to 3' in each duplex. In view of this gradual compression of the minor groove along the oligo(dA) tract, it can be understood clearly why d(GGAAATTTCC)n x 2 and d(GAAAATTTTC)n x 2 are bent, and d(GGTTTAAACC)n x 2 and d(GTTTTAAAAC)n x 2 are not bent. The relative extents of bending of a series of d(AjN10-j)nd(N10-jTj)n sequences can also be understood systematically. Additionally, it was found that the TA step disturbed the compression of the minor groove of the oligo(dA) tract to some extent.  相似文献   

2.
M Katahira  H Sugeta  Y Kyogoku 《Biochemistry》1990,29(31):7214-7222
The conformation of the putative bent DNA d(GGAAATTTCC)2 in solution was studied by use of 1H NMR and restrained molecular dynamics. Most of the resonances were assigned sequentially. A total of 182 interproton distance restraints were determined from two-dimensional nuclear Overhauser effect spectra with short mixing times. Torsion angle restraints for each sugar moiety were determined by qualitative analysis of a two-dimensional correlated spectrum. Restrained molecular dynamics was carried out with the interproton distances and torsion angles incorporated into the total energy function of the system in the form of effective potential terms. As initial conformations for restrained molecular dynamics, classical A-DNA and B-DNA were adopted. The root mean square deviation (rmsd) between these two conformations is 5.5 A. The conformations obtained by use of restrained molecular dynamics are very similar to each other, the rmsd being 0.8 A. On the other hand, the conformations obtained by use of molecular dynamics without experimental restraints or restrained energy minimization depended heavily on the initial conformations, and convergence to a similar conformation was not attained. The conformation obtained by use of restrained molecular dynamics exhibits a few remarkable features. The second G residue takes on the BII conformation [Fratini, A. V., Kopka, M. L., Drew, H. R., & Dickerson, R. E. (1982) J. Biol. Chem. 257, 14686-14707] rather than the standard BI conformation. There is discontinuity of the sugar puckering between the eighth T and ninth C. The minor groove of the oligo(dA) tract is rather compressed. As a result, d(GGAAATTTCC)2 is bent.  相似文献   

3.
The resonances of the imino protons and all of the non-exchangeable protons (except for H5'/H5') of d(CGCAAAAAAGCG)d(CGCTTTTTTGCG) have been assigned by means of one- and two-dimensional NMR spectroscopies. Qualitative analyses showed that the overall structure is of the B-form, but local conformational deviations exist. The NOEs between the imino protons of thymines and H2 of adenines suggest that the A-T base pairs are propeller-twisted to almost the same degree as in crystals. A remarkable chemical shift of H1' was observed for the residue located just before the oligo(dA)oligo(dT) tract, suggesting the presence of conformational discontinuity at the junctions between the oligo(dA)oligo(dT) tract and the other portions. Analyses of cross peaks in NOESY spectra between H2 of adenines and H1' of the 3'-neighbouring residues on the complementary strand revealed that the minor groove of the oligo(dA)oligo(dT) tract is narrow and compressed gradually, from 5' to 3', along the tract.  相似文献   

4.
In-phase ligated DNA containing T(n)A(n) segments fail to exhibit the retarded polyacrylamide gel electrophoresis (PAGE) migration observed for in-phase ligated A(n)T(n) segments, a behavior thought to be correlated with macroscopic DNA curvature. The lack of macroscopic curvature in ligated T(n)A(n) segments is thought to be due to cancellation of bending in regions flanking the TpA steps. To address this issue, solution-state NMR, including residual dipolar coupling (RDC) restraints, was used to determine a high-resolution structure of [d(CGAGGTTTAAACCTCG)2], a DNA oligomer containing a T3A3 tract. The overall magnitude and direction of bending, including the regions flanking the central TpA step, was measured using a radius of curvature, Rc, analysis. The Rc for the overall molecule indicated a small magnitude of global bending (Rc = 138 +/- 23 nm) towards the major groove, whereas the Rc for the two halves (72 +/- 33 nm and 69 +/- 14 nm) indicated greater localized bending into the minor groove. The direction of bending in the regions flanking the TpA step is in partial opposition (109 degrees), contributing to cancellation of bending. The cancellation of bending did not correlate with a pattern of roll values at the TpA step, or at the 5' and 3' junctions, of the T3A3 segment, suggesting a simple junction/roll model is insufficient to predict cancellation of DNA bending in all T(n)A(n) junction sequence contexts. Importantly, Rc analysis of structures refined without RDC restraints lacked the precision and accuracy needed to reliably measure bending.  相似文献   

5.
Hud NV  Feigon J 《Biochemistry》2002,41(31):9900-9910
The localization of Mn(2+) in A-tract DNA has been studied by (1)H NMR spectroscopy using a series of self-complementary dodecamer oligonucleotides that contain the sequence motifs A(n)(n) and T(n)A(n), where n = 2, 3, or 4. Mn(2+) localization in the minor groove is observed for all the sequences that have been studied, with the position and degree of localization being highly sequence-dependent. The site most favored for Mn(2+) localization in the minor groove is near the 5'-most ApA step for both the T(n)A(n) and the A(n)T(n) series. For the T(n)A(n) series, this results in two closely spaced symmetry-related Mn(2+) localization sites near the center of each duplex, while for the A(n)T(n) series, the two symmetry-related sites are separated by as much as one half-helical turn. The degree of Mn(2+) localization in the minor groove of the T(n)A(n) series decreases substantially as the AT sequence element is shortened from T(4)A(4) to T(2)A(2). The A(n)T(n) series also exhibits length-dependent Mn(2+) localization; however, the degree of minor groove occupancy by Mn(2+) is significantly less than that observed for the T(n)A(n) series. For both A(n)T(n) and T(n)A(n) sequences, the 3'-most AH2 resonance is the least broadened of the AH2 resonances. This is consistent with the observation that the minor groove of A-tract DNA narrows in the 5' to 3' direction, apparently becoming too narrow after two base pairs for the entry of a fully hydrated divalent cation. The results that are reported illustrate the delicate interplay that exists between DNA nucleotide sequence, minor groove width, and divalent cation localization. The proposed role of cation localization in helical axis bending by A-tracts is also discussed.  相似文献   

6.
The crystal structure of an alternating RNA octamer, r(guauaca)dC (RNA bases are in lower case while the only DNA base is in upper case), with two 3' overhang residues one of them a terminal deoxycytosine and the other a ribose adenine, has been determined at 2.2 A resolution. The refined structure has an Rwork 18.6% and Rfree 26.8%. There are two independent duplexes (molecules I and II) in the asymmetric unit cell, a = 24.95, b = 45.25 and c = 73.67 A, with space group P2(1)2(1)2(1). Instead of forming a blunt end duplex with two a+.c mispairs and six Watson-Crick base-pairs, the strands in the duplex slide towards the 3' direction forming a two-base overhang (radC) and a six Watson-Crick base-paired duplex. The duplexes are bent (molecule I, 20 degrees; molecule II, 25 degrees) and stack head-to-head to form a right-handed superhelix. The overhang residues are looped out and the penultimate adenines of the two residues at the top end (A15) are anti and at the bottom (A7) end are syn. The syn adenine bases form minor groove A*(G.C) base triples with C8-H...N2 hydrogen bonds. The anti adenine in molecule II also forms a triple and a different C2-H...N3 hydrogen bond, while the other anti adenine in molecule I does not, it stacks on the looped out overhang base dC. The 3' terminal deoxycytosines form two stacked hemiprotonated trans d(C.C)+ base-pairs and the pseudo dyad related molecules form four consecutive deoxyribose and ribose zipper hydrogen bonds in the minor groove.  相似文献   

7.
The interaction of Hoechst 33258 with the minor groove of the adenine-tract DNA duplex d(CTTTTGCAAAAG)2 has been studied in both D2O and H2O solutions by 1D and 2D 1H NMR spectroscopy. Thirty-one nuclear Overhauser effects between drug and nucleotide protons within the minor groove of the duplex, together with ring-current induced perturbations to the chemical shifts of basepair and deoxyribose protons, define the position and orientation of the bound dye molecules. Two drug molecules bind cooperatively and in symmetry related orientations at the centre of the 5'-TTTT and 5'-AAAA sequences with the binding interactions spanning only the four A-T basepairs. The positively charged N-methylpiperazine moieties point towards the centre of the duplex while the phenol groups are disposed towards the 3'-ends of the sequence. Resonance averaging is apparent for both the D2/D6 and D3/D5 phenol protons and D2"'/D6"' and D3"'/D5"' of the N-methylpiperazine ring and is consistent with these groups being involved in rapid rotation or ring-flipping motions in the bound state. Interstrand NOEs between adenine H2s and deoxyribose H1' are consistent with a high degree of propeller twisting of the A-T basepairs at the binding site of the aromatic benzimidazole and phenol rings of Hoechst. The data imply that the minor groove is particularly narrow with many contacts between the complementary curved surfaces of the drug and DNA indicating that strong van der Waals interactions, involving the floor and the walls of the minor groove, stabilize the complex. In our model the NH groups of the benzimidazole rings are positioned to make a pair of bifurcated hydrogen bonds with the adenine N3 and thymine O2 on the floor of the minor groove.  相似文献   

8.
DNA originating from chicken erythrocyte mononucleosomes was cloned and sequenced. The properties of nucleosome reconstruction were compared for two cloned inserts, selected on account of their interesting sequence organization, length and difference in DNA bending. Cloned fragment 223 (182 base-pairs) carries alternatively (A)3-4 and (T)4-5 runs approximately every ten base-pairs and is bent; cloned fragment 213 (182 base-pairs) contains a repeated C4-5ATAAGG consensus sequence and is apparently not bent. Our experiments indicate the preference of the bent DNA fragment 223 over fragment 213 to associate in vitro with an octamer of histones under stringent conditions. We provide evidence that the in vitro nucleosome formation is hampered in the case of fragment 213, whereas the reconstituted nucleosomes were equally stable once formed. For the correct determination of the positioning of the histone octamer with regard to the two nucleosome-derived cloned DNA sequences, the complementary use of micrococcal nuclease, exonuclease III and DNase I is a prerequisite. No unique, but rotationally related, positions of the histone octamer were found on these nucleosome-derived DNA fragments. The sequence-dependent anisotropic flexibility, as well as intrinsic bending of the DNA, resulting in a rotational setting of the DNA fragments on the histone core, seems to be a strong determinant for the allowed octamer positions, Exonuclease III digestion indicates a different histone-DNA association when oligo(d(C.G)n) stretches are involved. The apparent stagger near oligo(d(A.T)n) stretches generated by DNase I digestion on reconstituted nucleosome 223 was found to be inverted from the normal two-base 3' overhang to a two-base 5' overhang. Two possibilities of the oligo(d(A.T)n) minor groove location relative to the histone core are envisaged to explain this anomaly in stagger.  相似文献   

9.
The resonances of all the non-exchangeable protons (except 5'H and 5"H) of d(CGAAAAATCGG) + d(CCGATTTTTCG), a putatively bent DNA duplex, have been assigned using 1H two-dimensional nuclear magnetic resonance methods. The nuclear Overhauser effect data indicate an overall B-form structure for this double-helical DNA undecamer. However, several features of the NMR data such as some unusually weak C8/C6 proton to C1' proton NOE cross-peaks, the presence of relatively intense C2H to C1'H NOE cross-peaks, and unusual chemical shifts of some 2", 2', and 1' protons suggest a substantial perturbation of the helix structure at the junctions and along the length of the tract of A residues. These structural deviations are considered in terms of models of DNA bending.  相似文献   

10.
While solution structures of adenine tract (A-tract) oligomers have indicated a unique bend direction equivalent to negative global roll (commonly termed "minor-groove bending"), crystallographic data have not unambiguously characterized the bend direction; nevertheless, many features are shared by all A-tract crystal and solution structures (e.g. propeller twisting, narrow minor grooves, and localized water spines). To examine the origin of bending and to relate findings to the crystallographic and solution data, we analyze molecular dynamics trajectories of two solvated A-tract dodecamers: 1D89, d(CGCGA(6)CG), and 1D98, d(CGCA(6)GCG), using a new general global bending framework for analyzing bent DNA and DNA/protein complexes. It is significant that the crystallographically-based initial structures are converted from dissimilar to similar bend directions equivalent to negative global roll, with the average helical-axis bend ranging from 10.5 degrees to 14.1 degrees. The largest bend occurs as positive roll of 12 degrees on the 5' side of the A-tracts (supporting a junction model) and is reinforced by gradual curvature at each A-tract base-pair (bp) step (supporting a wedge model). The precise magnitude of the bend is subtly sequence dependent (consistent with a curved general sequence model). The conversion to negative global roll only requires small local changes at each bp, accumulated over flexible moieties both outside and inside the A-tract. In contrast, the control sequence 1BNA, d(CGCGA(2)TTCGCG), bends marginally (only 6.9 degrees ) with no preferred direction. The molecular features that stabilize the bend direction in the A-tract dodecamers include propeller twisting of AT base-pairs, puckering differences between A and T deoxyriboses, a narrow minor groove, and a stable water spine (that extends slightly beyond the A-tract, with lifetimes approaching 0.2 ns). The sugar conformations, in particular, are proposed as important factors that support bent DNA. It is significant that all these curvature-stabilizing features are also observed in the crystallographic structures, but yield overall different bending paths, largely due to the effects of sequences outside the A-tract. These results merge structural details reported for A-tract structures by experiment and theory and lead to structural and dynamic insights into sequence-dependent DNA flexibility, as highlighted by the effect of an A-tract variant of a TATA-box element on bending and flexibility required for TBP binding.  相似文献   

11.
We have investigated intermolecular interactions and conformational features of the netropsin X d(G-G-A-A-T-T-C-C) complex by one- and two-dimensional NMR studies in aqueous solution. Netropsin removes the 2-fold symmetry of the d(G-G-A-A-T-T-C-C) duplex at the AATT binding site and to a lesser extent at adjacent dG X dC base pairs resulting in doubling of resonances for specific positions in the spectrum of the complex at 25 degrees C. We have assigned the amide, pyrrole, and CH2 protons of netropsin, and the base and sugar H1' protons of the nucleic acid from an analysis of the nuclear Overhauser effect (NOESY) and correlated (COSY) spectra of the complex at 25 degrees C. We observe intermolecular nuclear Overhauser effects (NOE) between all three amide and both pyrrole protons on the concave face of the antibiotic and the minor groove adenosine H2 proton of the two central A4 X T5 base pairs of the d(G1-G2-A3-A4-T5-T6-C7-C8) duplex. Weaker intermolecular NOEs are also observed between the pyrrole concave face protons and the sugar H1' protons of residues T5 and T6 in the AATT minor groove of the duplex. We also detect intermolecular NOEs between the guanidino CH2 protons at one end of netropsin and adenosine H2 proton of the two flanking A3 X T6 base pairs of the octanucleotide duplex. These studies establish a set of intermolecular contacts between the concave face of the antibiotic and the minor groove AATT segment of the d(G-G-A-A-T-T-C-C) duplex in solution. The magnitude of the NOEs require that there be no intervening water molecules sandwiched between the antibiotic and the DNA so that release of the minor groove spine of hydration is a prerequisite for netropsin complex formation.  相似文献   

12.
Sequence-dependent anisotropic flexibility of B-DNA. A conformational study   总被引:7,自引:0,他引:7  
Bending flexibility of the six tetrameric duplexes was investigated d(AAAA):d(TTTT), d(AATT)2, d(TTAA)2, d(GGGG):d(CCCC), d(GGCC)2 and d(CCGG)2,. The tetramers were extended in the both directions by regular double helices. The stiffness of the B-DNA double helix when bent into the both grooves proved to be less than that in the perpendicular direction by an order of magnitude. Such an anisotropy is a property of the sugar-phosphate backbone structure. The calculated fluctuations of the DNA bending along the dyad axis, 5-7 degree, are in agreement with experimental value of the DNA persistence length. Anisotropy of the double helix is sequence-dependent: most easily bent into the minor groove are the tetramers with purine-pyrimidine dimer (RY) in the middle. In contrast, YR dinucleotides prefer bending into the major groove. Moreover, they have an equilibrium bend of 6-12 degree into this groove. The above inequality is caused by stacking interaction of the bases. The bend in the central dimer is distributed to some extent between the adjacent links, though the main fraction of the bend remains within the central link. Variation of the sugar-phosphate geometry in the bent helix is inessential, so that DNA remains within the B-family of forms: namely, when the helical axis is bent by 20 degree. the backbone dihedral angles vary by no more than 15 degree. The obtained results are in accord with x-ray structure of the B-DNA dodecamer; they further substantiate our early model of DNA wrapping in the nucleosome by means of "mini-kinks" separated by a half-pitch of the double helix, i.e. by 5-6 b.p. Sequence-dependent anisotropy of DNA presumably dictates the three-dimensional structure of DNA in solution as well. We have found that nonrandom allocation of YR dimers leads to the systematic bends in equilibrium structure of certain DNA fragments.  相似文献   

13.
14.
G Gupta  M H Sarma  R H Sarma 《Biochemistry》1988,27(20):7909-7919
It is very well documented that the presence of an An.Tn tract causes intrinsic DNA bending. Hagerman demonstrated that the sequence in which the An.Tn tracts are joined plays a very crucial role in determining DNA bending. For example, Hagerman showed that the polymer with a repeat of d(GA4T4C)n greater than or equal to 10 is bent but the polymer with a repeat of d(GT4A4C)n greater than or equal to 10 is not bent [Hagerman, P. J. (1986) Nature (London) 326, 720-722]. Earlier we have shown that the decamer repeat d(GA4T4C)2 is itself bent with a finite structural discontinuity at the A----T sequence [Sarma, M. H., Gupta, G., & Sarma, R. H. (1988) Biochemistry 27, 3423-3432]. In the present article, we summarize our studies on the decamer repeat d(GT4A4C)2 structure in solution. By employment of 1D and 2D 1H NMR studies at 500 MHz a complete sequential assignment has been made for the exchangeable and nonexchangeable protons belonging to the ten nucleotides. NOESY data were collected for d(GT4A4C)2 at 17 degrees C in D2O for three mixing times, 150, 100, and 50 ms. A quantitative NOESY simulation technique was employed to arrive at a structural model of d(GT4A4C)2 in solution. Our detailed analyses revealed the following structural features: (i) The duplex adopts the gross morphology of a B-DNA. (ii) All the A.T pairs are propeller twisted (less than or equal to -15 degrees). (iii) Although both A and T nucleotides belong to the C2'-endo,anticonformational domain, there is a mild variation in the actual conformation of the A and T residues. (iv) Even though there is a subtle conformational difference in the A and T nucleotides, two structural frames of T4.A4 segments are joined at the T----A sequence in such a way that there is no finite discontinuity at the junction; i.e., two neighboring frames exactly coincide at the T----A junction. Thus, our studies on d(GA4T4C)2 (Sarma et al., 1988) and on d(GT4A4C)2 (this article) reveal the structural peculiarity of the An.Tn tract and the effect of A----T/T----A sequence in causing DNA bending.  相似文献   

15.
Lee BW  Moon SJ  Youn MR  Kim JH  Jang HG  Kim SK 《Biophysical journal》2003,85(6):3865-3871
The binding site of Delta- and Lambda-[Ru(phenanthroline)2L]2+ (L being phenanthroline (phen), dipyrido[3,2-a:2'3'-c]phenazine (DPPZ), and benzodipyrido[3,2-a:2'3'-c]phenazine (benzoDPPZ)), bound to poly[d(A-T)2] in the presence and absence of 4',6-diamidino-2-phenylindole (DAPI) was investigated by circular dichroism and fluorescence techniques. DAPI binds at the minor groove of poly[d(A-T)2] and blocks the groove. The circular dichroism spectrum of all Ru(II) complexes are essentially unaffected whether the minor groove of poly[d(A-T)2] is blocked by DAPI or not, indicating that the Ru(II) complexes are intercalated from the major groove. When DAPI and Ru(II) complexes simultaneously bound to poly[d(A-T)2], the fluorescence intensity of DAPI decreases upon increasing Ru(II) complex concentrations. The energy of DAPI at excited state transfers to Ru(II) complexes across the DNA via the F?rster type resonance energy transfer. The efficiency of the energy transfer is similar for both [Ru(phen)2DPPZ]2+ and [Ru(phen)2benzoDPPZ]2+ complexes, whereas that of [Ru(phen)3]2+ is significantly lower. The distance between DAPI and [Ru(phen)3]2+ is estimated as 0.38 and 0.64 F?rster distance, respectively, for the Delta- and Lambda-isomer.  相似文献   

16.
Huang H  Wang H  Qi N  Lloyd RS  Rizzo CJ  Stone MP 《Biochemistry》2008,47(44):11457-11472
The trans-4-hydroxynonenal (HNE)-derived exocyclic 1, N(2)-dG adduct with (6S,8R,11S) stereochemistry forms interstrand N(2)-dG-N(2)-dG cross-links in the 5'-CpG-3' DNA sequence context, but the corresponding adduct possessing (6R,8S,11R) stereochemistry does not. Both exist primarily as diastereomeric cyclic hemiacetals when placed into duplex DNA [Huang, H., Wang, H., Qi, N., Kozekova, A., Rizzo, C. J., and Stone, M. P. (2008) J. Am. Chem. Soc. 130, 10898-10906]. To explore the structural basis for this difference, the HNE-derived diastereomeric (6S,8R,11S) and (6R,8S,11R) cyclic hemiacetals were examined with respect to conformation when incorporated into 5'-d(GCTAGC XAGTCC)-3' x 5'-d(GGACTCGCTAGC)-3', containing the 5'-CpX-3' sequence [X = (6S,8R,11S)- or (6R,8S,11R)-HNE-dG]. At neutral pH, both adducts exhibited minimal structural perturbations to the DNA duplex that were localized to the site of the adduction at X(7) x C(18) and its neighboring base pair, A(8) x T(17). Both the (6S,8R,11S) and (6R,8S,11R) cyclic hemiacetals were located within the minor groove of the duplex. However, the respective orientations of the two cyclic hemiacetals within the minor groove were dependent upon (6S) versus (6R) stereochemistry. The (6S,8R,11S) cyclic hemiacetal was oriented in the 5'-direction, while the (6R,8S,11R) cyclic hemiacetal was oriented in the 3'-direction. These cyclic hemiacetals effectively mask the reactive aldehydes necessary for initiation of interstrand cross-link formation. From the refined structures of the two cyclic hemiacetals, the conformations of the corresponding diastereomeric aldehydes were predicted, using molecular mechanics calculations. Potential energy minimizations of the duplexes containing the two diastereomeric aldehydes predicted that the (6S,8R,11S) aldehyde was oriented in the 5'-direction while the (6R,8S,11R) aldehyde was oriented in the 3'-direction. These stereochemical differences in orientation suggest a kinetic basis that explains, in part, why the (6S,8R,11S) stereoisomer forms interchain cross-links in the 5'-CpG-3' sequence whereas the (6R,8S,11R) stereoisomer does not.  相似文献   

17.
Joubert A  Sun XW  Johansson E  Bailly C  Mann J  Neidle S 《Biochemistry》2003,42(20):5984-5992
A dimeric bis-benzimidazole molecule has been designed by computer modeling to bind to a DNA sequence via the DNA minor groove that covers a complete turn of B-DNA. A series of bis-benzimidazole dimers incorporating a -O-(CH(2))(n)()-X-CH(2))(n)()-O- linker, with n = 2 or 3 and X = O or N(+)H(Me), were screened for their capacity to fit the DNA minor groove. The modeling studies enabled an optimal linker to be devised (n = 3, X = N(+)H(Me)), and the synthesis of the predicted "best" molecule, N-methyl-N,N-bis-3,3-[4'-[5' '-(2' "-p-methoxyphenyl)-5' "-1H-benzimidazolyl]-2' '-1H-benzimidazolyl]phenoxypropylamine (5), is reported. The optimized linker permits the two symmetric bis-benzimidazole motifs to maintain hydrogen-bonded contacts with the floor of the DNA minor groove. DNase I footprinting studies have shown that this ligand binds with high affinity to sequences representing approximately a complete turn of B-DNA, represented by the [A.T](4)-[G.C]-[A.T](4) motif, and only poorly to sequences of half this site size, in accord with the computer modeling studies. Compound 5 does not show acute cellular cytotoxicity, in contrast with its monomeric bis-benzimidazole precursors, yet is rapidly taken up into cells.  相似文献   

18.
The hydration in the minor groove of double stranded DNA fragments containing the sequences 5'-dTTAAT, 5'-dTTAAC, 5'-dTTAAA and 5'-dTTAAG was investigated by studying the decanucleotide duplex d(GCATTAATGC)2 and the singly cross-linked decameric duplexes 5'-d(GCATTAACGC)-3'-linker-5'-d(GCGTTAATGC)-3' and 5'-d(GCCTTAAAGC)-3'-linker-5'-d(GCTTTAAGGC)-3' by NMR spectroscopy. The linker employed consisted of six ethyleneglycol units. The hydration water was detected by NOEs between water and DNA protons in NOESY and ROESY spectra. NOE-NOESY and ROE-NOESY experiments were used to filter out intense exchange cross-peaks and to observe water-DNA NOEs with sugar 1' protons. Positive NOESY cross-peaks corresponding to residence times longer than approximately 0.5 ns were observed for 2H resonances of the central adenine residues in the duplex containing the sequences 5'-dTTAAT and 5'-dTTAAC, but not in the duplex containing the sequences 5'-dTTAAA and 5'-dTTAAG. In all nucleotide sequences studied here, the hydration water in the minor groove is significantly more mobile at both ends of the AT-rich inner segments, as indicated by very weak or negative water-A 2H NOESY cross-peaks. No positive NOESY cross-peaks were detected with the G 1'H and C 1'H resonances, indicating that the minor groove hydration water near GC base pairs is kinetically less restrained than for AT-rich DNA segments. Kinetically stabilized minor groove hydration water was manifested by positive NOESY cross-peaks with both A 2H and 1'H signals of the 5'-dTTAA segment in d(GCATTAATGC)2. More rigid hydration water was detected near T4 in d(GCATTAATGC)2 as compared with 5'-d(GCATTAACGC)-3'-linker-5'-d(GCGTTAATGC)-3', although the sequences differ only in a single base pair. This illustrates the high sensitivity of water-DNA NOEs towards small conformational differences.  相似文献   

19.
The residence time of the bound water molecules in the antisense oligodeoxyribonucleotides containing 7'-alpha-methyl (TMe) carbocyclic thymidines in duplex (I), d5'(1C2G3C4G5A6A7TMc8TMe9C10G11C12G)23', and 6'-alpha-hydroxy (TOH) carbocyclic thymidines in duplex (II), d5'(1C2G3C4G5AOH6AOH7TOH8 TOH9C10G11C12G)2(3), have been investigated using a combination of NOESY and ROESY experiments. Because of the presence of 7'-alpha-methyl groups of TMe in the centre of the minor groove in duplex (I), the residence time of the bound water molecule is shorter than 0.3 ns. The dramatic reduction of the residence time of the water molecule in the minor groove in duplex (I) compared with the natural counterpart has been attributed to the replacement of second shell of hydration and disruption of hydrogen-bonding with 04' in the minor groove by hydrophobic alpha-methyl groups, as originally observed in the X-ray study. This effect could not be attributed to the change of the width of the minor groove because a comparative NMR study of the duplex (I) and its natural counterpart showed that the widths of their minor grooves are more or less unchanged (r.m.s.d change in the core part is <0.63A). For duplex (II) with polar 6'-alpha-hydroxyl groups pointed to the minor groove, the correlation time is much longer than 0.36 ns as a result of the stabilising hydrogen-bonding interaction with N3 or 02 of the neighbouring nucleotides.  相似文献   

20.
S M Chen  W Leupin  M Rance  W J Chazin 《Biochemistry》1992,31(18):4406-4413
The dodecadeoxynucleotide duplex d(GGTTAATGCGGT).d(ACCGCATTAACC) and its 1:1 complex with the minor groove binding drug SN-6999 have been prepared and studied by two-dimensional 1H nuclear magnetic resonance spectroscopy. Complete sequence-specific assignments have been obtained for the free duplex by standard methods. The line widths of the resonances in the complex are greater than those observed for the free duplex, which complicates the assignment process. Extensive use of two-quantum spectroscopy was required to determine the scalar correlations for identifying all of the base proton and most of the 1'H-2'H-2'H spin subsystems for the complex. This permitted unambiguous sequence-specific resonance assignments for the complex, which provides the necessary background for a detailed comparison of the structure of the duplex, with and without bound drug. A series of intermolecular NOEs between drug and DNA were identified, providing sufficient structural constraints to position the drug in the minor groove of the duplex. However, the combination of NOEs observed can only be rationalized by a model wherein the drug binds in the minor groove of the DNA in both orientations relative to the long helix axis and exchanges rapidly between the two orientations. The drug binds primarily in the segment of five consecutive dA-dT base pairs d(T3T4A5A6T7).d(A18T19T20A21A22), but surprisingly strong interactions are found to extend one residue in the 3' direction along each strand to G8 and C23. The observation of intermolecular contacts to residues neighboring the AT-rich region demonstrates that the stabilization of the bis(quaternary ammonium) heterocycle family of AT-specific, minor groove binding drugs is not based exclusively on interactions with dA-dT base pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号