首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
1. The relationship between the activity of adenosine metabolizing enzymes 5'nucleotidase (5'N), adenosine kinase (A.K.) and adenosine deaminase (A.D.) with basal and insulin-stimulated glucose transport in isolated fat cells from young and old animals was studied at 08:00 and 16:00 hr. 2. In cells from young animals a larger insulin-stimulation of glucose transport was observed at 16:00 hr than at 08:00 hr. Also at 16:00 hr small changes in 5'N, A.K. and A.D. activities suggest a decrease in adenosine formation. 3. In the cells from old animals no effect of insulin was observed at any time, while a 3-5-fold increase in 5'N indicated a predominance of adenosine formation at both times studied. 4. An inverse relationship was observed in the changes of adenosine metabolism and insulin action.  相似文献   

2.
The presence of the membrane lipid phosphatidylcholine (PC) in the bacterial membrane is critically important for many host-microbe interactions. The phospholipid N-methyltransferase PmtA from the plant pathogen Agrobacterium tumefaciens catalyzes the formation of PC by a three-step methylation of phosphatidylethanolamine via monomethylphosphatidylethanolamine and dimethylphosphatidylethanolamine. The methyl group is provided by S-adenosylmethionine (SAM), which is converted to S-adenosylhomocysteine (SAH) during transmethylation. Despite the biological importance of bacterial phospholipid N-methyltransferases, little is known about amino acids critical for binding to SAM or phospholipids and catalysis. Alanine substitutions in the predicted SAM-binding residues E58, G60, G62, and E84 in A. tumefaciens PmtA dramatically reduced SAM-binding and enzyme activity. Homology modeling of PmtA satisfactorily explained the mutational results. The enzyme is predicted to exhibit a consensus topology of the SAM-binding fold consistent with cofactor interaction as seen with most structurally characterized SAM-methyltransferases. Nuclear magnetic resonance (NMR) titration experiments and (14)C-SAM-binding studies revealed binding constants for SAM and SAH in the low micromolar range. Our study provides first insights into structural features and SAM binding of a bacterial phospholipid N-methyltransferase.  相似文献   

3.
The hepatic concentrations of S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH) and adenosine (Ado) in the rat were examined diurnally and as a function of fasting. Ado concentrations increased continuously throughout the fasting period; concentrations after 2 days of fasting were 7.5-fold higher than control values. Diurnally, the concentration of Ado was highest during the light hours. SAM and the ratio of SAM/SAH were reduced greater than 50% due to fasting and exhibited a significant daily rhythm which appeared to be related to dietary methionine availability. Hepatic SAM concentrations decreased continuously during the light hours and increased during the dark period to levels 7.3-fold greater than the lowest light values. The concentration of SAH was altered in a similar fashion yet to a much lesser degree such that the ratio of SAM/SAH paralleled the changes in the concentration of SAM. The SAM/SAH ratio exhibited a 4.5-fold difference between the peak and nadir values.  相似文献   

4.
The effect of cigarette smoke extract (CSE) on S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), and sulfur amino acid metabolism was examined in human lung epithelial-like (A549) cells exposed to various CSE concentrations (2.5-100%) for 24 or 48 h. Intracellular SAM and SAM/SAH ratio were elevated after exposure to CSE for 48 h. Cell SAH content decreased, but the effect was not consistent. Cellular cystathionine, cysteine, and methionine levels were increased after CSE exposure for 48h. Sub-acute exposure to CSE induced increases in cellular SAM and SAM/SAH ratio. The transsulfuration pathway was likely activated by CSE since cystathionine increased, potentially contributing to the increased total intracellular GSH content.  相似文献   

5.
Biological transmethylation reaction is a key step in the duplication of virus life cycle, in which S-adenosylmethionine plays as the methyl donor. The product of this reactions, S-adenosylhomocysteine (AdoHcy) inhibits the transmethylation process. AdoHcy is hydrolysed to adenosine and L-homocysteine by the action of S-adenosylhomocysteine hydrolase (SAH). Thus the virus life cycle should be cut off once the action of SAH is inhibited. Our study was focussed on the discovery of potential inhibitor against SAH. We performed a similarity search in Traditional Chinese Medicine Database and retrieved 17 hits with high similarity. After that we virtually docked the 17 compounds as well as the natural substrates to the hydrolase using Autodock 3.0.1 software. Then we discussed about the mechanism of the inhibition reaction, followed by proposing the potential inhibitors by comparing best docked solutions and possible modification for the best inhibitors.  相似文献   

6.
Summary DL-ethionine increases the activity of liver biotinidase, an enzyme which hydrolyzes biotinylesters and biotinylpeptides. Chronic DL-ethionine feeding increases transiently the activity of biotinidase in mouse and rat liver, after which it remains elevated in the serum. In the present work we show that both isomers of DL-ethionine are equally good enhancers of the liver biotinidase, while, 3-ethylthiopropionate, the toxic metabolite of DL-ethionine, has no effect on the biotinidase activity of either liver or serum. We have also employed two different combinations of inhibitors of the hydrolytic pathway of SAH, a transmethylation product and potent inhibitor of methylation. It was found that these inhibitors (EHNA and Ara-A, 2-deoxycoformycin and adenosine) increase the activity of serum biotinidase as was the case with ethionine. Because SAH does not ethylate biomolecules, these changes in biotinidase activity, which can not be preveneted by adenine, biotin or lecithin are most probably related to the inhibition of methylation.Abbreviations Ara-A 9--D-arabinofuranosyladenine - EHNA erythro-9-(2-hydroxy-3-nonyl)adenine - SAE S-adenosylethionine - SAH S-adenosylhomocysteine - SAM S-adenosylmethionine  相似文献   

7.
One-carbon metabolism is a network of metabolic pathways, disruption of which has been associated with cancer and other pathological conditions. Biomarkers of these pathways include homocysteine (HCY), S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH). A better understanding of the relationships between these biomarkers is needed for their utilization in research. This study investigated the relationships between fasting concentrations of plasma HCY, SAM, SAH and the ratio of SAM:SAH, and serum folate, vitamin B(12) and creatinine in a healthy adult population. A cross-sectional study recruited 678 volunteers; only subjects with complete data (n = 581) were included in this analysis. Correlations were used to examine bivariate relationships among the biomarkers and multivariate linear regression determined independent relationships with HCY, SAM and SAH treated as dependent variables in separate models. Multivariate logistic regression examined determinants of a low SAM:SAH ratio (defined as having a SAM:SAH ratio in the bottom quartile and SAH value in the top quartile). HCY correlated inversely with folate and vitamin B(12) and weakly correlated with SAH and creatinine. Both SAM and SAH correlated with creatinine but were independent of serum folate and vitamin B(12). In multivariate analyses, folate, vitamin B(12), creatinine, sex and age were associated with HCY; age and creatinine were determinants of SAM, and sex and creatinine determinants of SAH. Finally, male sex and increasing creatinine levels were associated with having a low SAM:SAH ratio. Findings suggest that HCY, SAM and SAH are relatively independent parameters and reflect distinct aspects of one-carbon metabolism.  相似文献   

8.
《Epigenetics》2013,8(7):689-694
The micronutrients folate and selenium may modulate DNA methylation patterns by affecting intracellular levels of the methyl donor S-adenosylmethionine (SAM) and/or the product of methylation reactions S-adenosylhomocysteine (SAH). WI-38 fibroblasts and FHC colon epithelial cells were cultured in the presence of two forms of folate or four forms of selenium at physiologically-relevant doses, and their effects on LINE-1 methylation, gene-specific CpG island (CGI) methylation and intracellular SAM:SAH were determined. At physiologically-relevant doses the forms of folate or selenium had no effect on LINE-1 or CGI methylation, nor on intracellular SAM:SAH. However the commercial cell culture media used for the selenium studies, containing supra-physiological concentrations of folic acid, induced LINE-1 hypomethylation, CGI hypermethylation and decreased intracellular SAM:SAH in both cell lines. We conclude that the exposure of normal human cells to supra-physiological folic acid concentrations present in commercial cell culture media perturbs the intracellular SAM:SAH ratio and induces aberrant DNA methylation.  相似文献   

9.
The methionine (MET) derivative, S-adenosylmethionine (SAM), provides methyl-groups for methylation reactions in many neural processes. In rats made diabetic with streptozotocin (SZ), brain SAM levels were generally lower (10–20%) than in controls, with a constant decrease being observed five weeks after onset of diabetes. This decrease in SAM levels may be due to reduced precursor (MET) availability because greatly elevating plasma MET concentrations in SZ diabetic rats by dietary manipulation increased their neural SAM concentrations to be approximately or even greater than (5–20%) those of controls. In contrast, neural levels of SAM's demethylated product, S-adenosylhomocysteine (SAH), were reduced to a greater extent (17–44%) than SAM levels in all groups of SZ diabetic rats independent of their plasma MET concentrations or brain SAM levels. This indicates that the decrease in SAH levels is not simply due to substrate (SAM) restriction. These changes in MET metabolites appear to be a general effect of diabetes rather than a non-pancreatic side-effect of SZ, because genetically diabetic BB Wistar rats also exhibited reduced brain SAM (25%) and brain SAH (46%) levels. These results indicate that methyl-groups from MET are handled differently in the brain of the diabetic rat, which considering the variety and importance of neural methylation reactions, could have important consequences for the diabetic.Abbreviations MET methionine - SAM S-adenosylmethionine - SAH S-adenosylhomocysteine - SZ streptozotocin - BBW BB Wistar - LNAA large neutral amino acids - BCAA branchedchain amino acids - MET:BCAA methionine to branched-chain amino acid ratio - MET:LNAA methionine to large neutral amino acid ratio  相似文献   

10.
Membrane phospholipid methylation has been described during activation of various immune cells. Moreover recent data indicated modulation of immune cells functions by adenosine. As S-Adenosyl-methionine and S-Adenosyl-homocysteine are adenosine analogs and modulators of transmethylation reactions, the effects of SAH and SAM were investigated on membrane phospholipid methylation and lymphocyte activation. SAM (10(-5) M) was shown to induce the membrane phospholipid methylation as assessed by the 3H-methyl-incorporation in membrane extract. This effect was inhibited by SAH. In contrast SAM and SAH did not affect the phytohemagglutinin-induced proliferative response of peripheral blood mononuclear cells. SAH neither modified the early internalization of membrane CD3 antigens nor did it prevent the late expression of HLA-DR antigens on lymphocytes activated by phytohemagglutinin. These results indicate that in vitro alteration of phospholipid methylation does not affect subsequent steps of human T lymphocyte activation and proliferation.  相似文献   

11.
S-adenosylhomocysteine (SAH) is known to be a potent inhibitor of S-adenosylmethionine (SAM)-mediated reactions, of which SAH itself is a product. The immediate metabolic fate of SAH involves its hydrolysis to adenosine and L-homocysteine by the enzyme SAH hydrolase, but the reversibility of this reaction and its extremely low Keq in the hydrolytic direction suggest that under certain conditions of adenosine excess, SAH might accumulate with significant cytotoxic effects. We have used a model system consisting of cultured S49 mouse lymphoma cells together with the adenosine deaminase (ADA) inhibitor, erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA), to determine whether SAH is a mediator of adenosine cytotoxicity.Cells rendered resistant to adenosine-induced pyrimidine starvation by the addition of exogenous uridine or by the mutational loss of adenosine kinase are still sensitive to adenosine at concentrations >15 μM. We find that this effect is appreciably enhanced by the addition of L-homocysteine thiolactone to the culture medium. Cytotoxic concentrations of adenosine also cause significant elevations in intracellular levels of SAH, which are increased an additional several fold by 100μM exogenous L-homocysteine thiolactone. A fair correlation exists between a single time point determination of intracellular SAH and the degree of growth inhibition after 72 hr, but complicated time-dependent variations in SAH make it difficult to compare results obtained in the absence and presence of exogenous L-homocysteine thiolactone.In vivo DNA methylation in S49 cells is markedly inhibited by exposure of cells to concentrations of adenosine known to cause uridine-resistant cytotoxicity. This inhibition of methylation has been measured with short-term pulses of radiolabel, and correlates well with intracellular concentrations of SAH at all tested combinations of adenosine and L-homocysteine thiolactone. The results suggest that the uridine-resistant cytotoxic effects of adenosine on ADA-inhibited S49 cells are secondary to the inhibition of SAM-mediated methylation reactions by the adenosine metabolite SAH.  相似文献   

12.
Transmethylation reactions utilize S-adenosylmethionine (SAM) as a methyl donor and are central to the regulation of many biological processes: more than fifty SAM-dependent methyltransferases methylate a broad spectrum of cellular compounds including DNA, histones, phospholipids and other small molecules. Common to all SAM-dependent transmethylation reactions is the release of the potent inhibitor S-adenosylhomocysteine (SAH) as a by-product. SAH is reversibly hydrolyzed to adenosine and homocysteine by SAH hydrolase. Hyperhomocysteinemia is an independent risk factor for cardiovascular disease. However, a major unanswered question is if homocysteine is causally involved in disease pathogenesis or simply a passive and indirect indicator of a more complex mechanism. A chronic elevation in homocysteine levels results in a parallel increase in intracellular or plasma SAH, which is a more sensitive biomarker of cardiovascular disease than homocysteine and suggests that SAH is a critical pathological factor in homocysteine-associated disorders. Previous reports indicate that supplementation with folate and B vitamins efficiently lowers homocysteine levels but not plasma SAH levels, which possibly explains the failure of homocysteine-lowering vitamins to reduce vascular events in several recent clinical intervention studies. Furthermore, more studies are focusing on the role and mechanisms of SAH in different chronic diseases related to hyperhomocysteinemia, such as cardiovascular disease, kidney disease, diabetes, and obesity. This review summarizes the current role of SAH in cardiovascular disease and its effect on several related risk factors. It also explores possible the mechanisms, such as epigenetics and oxidative stress, of SAH.This article is part of a Directed Issue entitled: Epigenetic dynamics in development and disease.  相似文献   

13.
Methionine metabolism is disrupted in patients with alcoholic liver disease, resulting in altered hepatic concentrations of S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), and other metabolites. The present study tested the hypothesis that reductive stress mediates the effects of ethanol on liver methionine metabolism. Isolated rat livers were perfused with ethanol or propanol to induce a reductive stress by increasing the NADH/NAD(+) ratio, and the concentrations of SAM and SAH in the liver tissue were determined by high-performance liquid chromatography. The increase in the NADH/NAD(+) ratio induced by ethanol or propanol was associated with a marked decrease in SAM and an increase in SAH liver content. 4-Methylpyrazole, an inhibitor the NAD(+)-dependent enzyme alcohol dehydrogenase, blocked the increase in the NADH/NAD(+) ratio and prevented the alterations in SAM and SAH. Similarly, co-infusion of pyruvate, which is metabolized by the NADH-dependent enzyme lactate dehydrogenase, restored the NADH/NAD(+) ratio and normalized SAM and SAH levels. The data establish an initial link between the effects of ethanol on the NADH/NAD(+) redox couple and the effects of ethanol on methionine metabolism in the liver.  相似文献   

14.
15.
Methionine is a component of one-carbon metabolism and a precursor of S-adenosylmethionine (SAM), the methyl donor for DNA methylation. When methionine intake is high, an increase of S-adenosylmethionine (SAM) is expected. DNA methyltransferases convert SAM to S-adenosylhomocysteine (SAH). A high intracellular SAH concentration could inhibit the activity of DNA methyltransferases. Therefore, high methionine ingestion could induce DNA damage and change the methylation pattern of tumor suppressor genes. This study investigated the genotoxicity of a methionine-supplemented diet. It also investigated the diet's effects on glutathione levels, SAM and SAH concentrations and the gene methylation pattern of p53. Wistar rats received either a methionine-supplemented diet (2% methionine) or a control diet (0.3% methionine) for six weeks. The methionine-supplemented diet was neither genotoxic nor antigenotoxic to kidney cells, as assessed by the comet assay. However, the methionine-supplemented diet restored the renal glutathione depletion induced by doxorubicin. This fact may be explained by the transsulfuration pathway, which converts methionine to glutathione in the kidney. Methionine supplementation increased the renal concentration of SAH without changing the SAM/SAH ratio. This unchanged profile was also observed for DNA methylation at the promoter region of the p53 gene. Further studies are necessary to elucidate this diet's effects on genomic stability and DNA methylation.  相似文献   

16.
Homocysteine is a sulfur-containing, nonproteinogenic, neurotoxic amino acid biosynthesized during methyl cycles after demethylation of S-adenosylmethionine (SAM) to S-adenosylhomocysteine (SAH) and subsequent hydrolysis of SAH into homocysteine and adenosine. Formed homocysteine is either catabolized into cystathionine (transsulfuration pathway) by cystathionine β-synthase, or remethylated into methionine (remethylation pathway) by methionine synthase. To demonstrate the specificity of Ras-elicited effects on the activity of methyl cycles, wild-type pheochromocytoma PC12, mutant oncogenic rasH gene (MVR) expressing PC12 pheochromocytoma and normal c-rasH stably transfected M-CR3B cells were incubated with the Nω-nitro-l-arginine methyl ester (l-NAME), and manumycin, (inhibitors of nitric oxide synthase and farnesyltransferase, respectively). We have found that l-NAME significantly changes the SAM/SAH ratio in both MCR and MVR cells. Moreover, these alterations have reciprocal character; in the MCR cells, the SAM/SAH ratio was raised, whereas in the MVR cells this ratio was decreased. We conclude that depletion of endogenous NO with l-NAME increased the production of SAH only in cells with mutated oncogenic RasH, possibly through enhancement of production of reactive oxygen species (ROS). Oxidative stress can increase cystathionine β-synthase activity that switches methyl cycles from remethylation into transsulfuration pathway to maintain the intracellular glutathione pool (essential for the redox-regulating capacity of cells) via an adaptive process.  相似文献   

17.
Almost homogeneous populations representing different developmental stages of somatic embryos (globular, torpedo-shaped, plantlets) and vacuolated cells were obtained from a cell suspension culture of carrot. The concentrations of S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH) and methylated DNA were determined in embryos at different developmental stages and were found to increase during somatic embryogenesis. The highest increase during embryogenesis was a 5-fold increase in the level of SAM. A considerable increase in the methylation index (SAM/SAH ratio) was also found. We propose that the levels of SAM and SAH may be involved in the control of somatic embryogenesis by affecting the level of DNA methylation, which in turn might cause differential changes in gene activation. An increase in the level of SAM may be a prerequisite for progression of embryogenesis and the development of complete embryos.  相似文献   

18.
An adenosine-sensitive (Ados) mutant of baby hamster kidney (BHK) cells, ara-S10d, when treated with a toxic concentration of adenosine (Ado), displayed a substantial elevation of S-adenosylhomocysteine (SAH), S-adenosylmethionine (SAM), and methylthioadenosine (MTA). Wild-type BHK cells treated with the same concentration of Ado (not toxic to these parental cells) produced an elevation of SAH 1.5 times higher than that of ara-S10d cells without a concurrent elevation of SAM or MTA. Inhibition of methylation of DNA and tRNA is greater in ara-S10d cells treated with Ado than that of similarly treated wild-type cells. This inhibition was correlated with the enhanced Ado toxicity, suggesting inhibition of methylation as a possible causal factor for the great increase in Ado sensitivity. Inhibition of methylation may be due to the elevated level of MTA and not solely to the elevation of SAH, a well-known potent inhibitor of numerous methyltransferases.  相似文献   

19.
The effects of exogenous ethanol (EtOH) and/or glycine on chick (Gallus gallus) embryo viability, brain apoptosis (caspase-3 activities), and the endogenous levels of brain homocysteine (HoCys), S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), and SAM/SAH were studied. Embryonic EtOH exposure caused decreased embryo viability as measured by EtOH-induced reductions in % living embryos at theoretical stage 37, EtOH-induced reductions in embryo masses, and EtOH-induced reductions in brain caspase-3 (Casp-3) activities. Exogenous glycine failed to attenuate EtOH-induced decreased embryo viability and EtOH-induced increased brain Casp-3 activities. Embryonic EtOH exposure caused elevated levels of endogenous HoCys, decreased levels of SAM, increased levels of SAH, and decreased SAM/SAH ratios in embryonic chick brains. While exogenous glycine failed to attenuate EtOH-induced increased HoCys levels, exogenous glycine attenuated EtOH-induced decreased levels of SAM, increased levels of SAH, and decreased SAM/SAH levels in embryonic chick brains.  相似文献   

20.
Methionine metabolism is disrupted in patients with alcoholic liver disease, resulting in altered hepatic concentrations of S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), and other metabolites. The present study tested the hypothesis that reductive stress mediates the effects of ethanol on liver methionine metabolism. Isolated rat livers were perfused with ethanol or propanol to induce a reductive stress by increasing the NADH/NAD+ ratio, and the concentrations of SAM and SAH in the liver tissue were determined by high-performance liquid chromatography. The increase in the NADH/NAD+ ratio induced by ethanol or propanol was associated with a marked decrease in SAM and an increase in SAH liver content. 4-Methylpyrazole, an inhibitor the NAD+-dependent enzyme alcohol dehydrogenase, blocked the increase in the NADH/NAD+ ratio and prevented the alterations in SAM and SAH. Similarly, co-infusion of pyruvate, which is metabolized by the NADH-dependent enzyme lactate dehydrogenase, restored the NADH/NAD+ ratio and normalized SAM and SAH levels. The data establish an initial link between the effects of ethanol on the NADH/NAD+ redox couple and the effects of ethanol on methionine metabolism in the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号