首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic lung infections in people suffering from cystic fibrosis (CF). In CF airways, P. aeruginosa forms surface-associated communities called biofilms. Compared with free-swimming cultures, biofilms resist clearance by the host immune system and display increased resistance to antimicrobial agents. In this study we developed a technique to coat surfaces with molecules that are abundant in CF airways in order to investigate their impact on P. aeruginosa biofilm development. We found that P. aeruginosa biofilm development proceeds differently on surfaces coated with the glycoprotein mucin compared with biofilm development on glass and surfaces coated with actin or DNA. Biofilms formed on mucin-coated surfaces developed large cellular aggregates and had increased tolerance to the antibiotic tobramycin compared with biofilms grown on glass. Analysis of selected mutant backgrounds in conjunction with time-lapse microscopy revealed that surface-associated motility was blocked on the mucin surface. Furthermore, our data suggest that a specific adhesin-mucin interaction immobilizes the bacterium on the surface. Together, these experiments suggest that mucin, which may serve as an attachment surface in CF airways, impacts P. aeruginosa biofilm development and function.  相似文献   

2.
Enhanced antibiotic resistance of Pseudomonas aeruginosa in the cystic fibrosis (CF) lung is thought to be due to the formation of biofilms. However, there is no information on the antibiotic resistance of P. aeruginosa biofilms grown on human airway epithelial cells or on the effects of airway cells on biofilm formation by P. aeruginosa. Thus we developed a coculture model and report that airway cells increase the resistance of P. aeruginosa to tobramycin (Tb) by >25-fold compared with P. aeruginosa grown on abiotic surfaces. Therefore, the concentration of Tb required to kill P. aeruginosa biofilms on airway cells is 10-fold higher than the concentration achievable in the lungs of CF patients. In addition, CF airway cells expressing DeltaF508-CFTR significantly enhanced P. aeruginosa biofilm formation, and DeltaF508 rescue with wild-type CFTR reduced biofilm formation. Iron (Fe) content of the airway in CF is elevated, and Fe is known to enhance P. aeruginosa growth. Thus we investigated whether enhanced biofilm formation on DeltaF508-CFTR cells was due to increased Fe release by airway cells. We found that airway cells expressing DeltaF508-CFTR released more Fe than cells rescued with WT-CFTR. Moreover, Fe chelation reduced biofilm formation on airway cells, whereas Fe supplementation enhanced biofilm formation on airway cells expressing WT-CFTR. These data demonstrate that human airway epithelial cells promote the formation of P. aeruginosa biofilms with a dramatically increased antibiotic resistance. The DeltaF508-CFTR mutation enhances biofilm formation, in part, by increasing Fe release into the apical medium.  相似文献   

3.
Bacterial biofilms at times undergo regulated and coordinated dispersal events where sessile biofilm cells convert to free-swimming, planktonic bacteria. In the opportunistic pathogen Pseudomonas aeruginosa, we previously observed that dispersal occurs concurrently with three interrelated processes within mature biofilms: (i) production of oxidative or nitrosative stress-inducing molecules inside biofilm structures, (ii) bacteriophage induction, and (iii) cell lysis. Here we examine whether specific reactive oxygen or nitrogen intermediates play a role in cell dispersal from P. aeruginosa biofilms. We demonstrate the involvement of anaerobic respiration processes in P. aeruginosa biofilm dispersal and show that nitric oxide (NO), used widely as a signaling molecule in biological systems, causes dispersal of P. aeruginosa biofilm bacteria. Dispersal was induced with low, sublethal concentrations (25 to 500 nM) of the NO donor sodium nitroprusside (SNP). Moreover, a P. aeruginosa mutant lacking the only enzyme capable of generating metabolic NO through anaerobic respiration (nitrite reductase, DeltanirS) did not disperse, whereas a NO reductase mutant (DeltanorCB) exhibited greatly enhanced dispersal. Strategies to induce biofilm dispersal are of interest due to their potential to prevent biofilms and biofilm-related infections. We observed that exposure to SNP (500 nM) greatly enhanced the efficacy of antimicrobial compounds (tobramycin, hydrogen peroxide, and sodium dodecyl sulfate) in the removal of established P. aeruginosa biofilms from a glass surface. Combined exposure to both NO and antimicrobial agents may therefore offer a novel strategy to control preestablished, persistent P. aeruginosa biofilms and biofilm-related infections.  相似文献   

4.
The ability to form biofilms in the airways of people suffering from cystic fibrosis is a critical element of Pseudomonas aeruginosa pathogenesis. The 15-gene psl operon encodes a putative polysaccharide that plays an important role in biofilm initiation in nonmucoid P. aeruginosa strains. Biofilm initiation by a P. aeruginosa PAO1 strain with disruption of pslA and pslB (DeltapslAB) was severely compromised, indicating that psl has a role in cell-surface interactions. In this study, we investigated the adherence properties of this DeltapslAB mutant using biotic surfaces (epithelial cells and mucin-coated surfaces) and abiotic surfaces. Our results showed that psl is required for attachment to a variety of surfaces, independent of the carbon source. To study the potential roles of Psl apart from attachment, we generated a psl-inducible P. aeruginosa strain (Deltapsl/p(BAD)-psl) by replacing the psl promoter region with araC-p(BAD), so that expression of psl could be controlled by addition of arabinose. Analysis of biofilms formed by the Deltapsl/p(BAD)-psl strain indicated that expression of the psl operon is required to maintain the biofilm structure at steps postattachment. Overproduction of the Psl polysaccharide led to enhanced cell-surface and intercellular adhesion of P. aeruginosa. This translated into significant changes in the architecture of the biofilm. We propose that Psl has an important role in P. aeruginosa adhesion, which is critical for initiation and maintenance of the biofilm structure.  相似文献   

5.
Stratified growth in Pseudomonas aeruginosa biofilms   总被引:4,自引:0,他引:4  
In this study, stratified patterns of protein synthesis and growth were demonstrated in Pseudomonas aeruginosa biofilms. Spatial patterns of protein synthetic activity inside biofilms were characterized by the use of two green fluorescent protein (GFP) reporter gene constructs. One construct carried an isopropyl-beta-d-thiogalactopyranoside (IPTG)-inducible gfpmut2 gene encoding a stable GFP. The second construct carried a GFP derivative, gfp-AGA, encoding an unstable GFP under the control of the growth-rate-dependent rrnBp(1) promoter. Both GFP reporters indicated that active protein synthesis was restricted to a narrow band in the part of the biofilm adjacent to the source of oxygen. The zone of active GFP expression was approximately 60 microm wide in colony biofilms and 30 microm wide in flow cell biofilms. The region of the biofilm in which cells were capable of elongation was mapped by treating colony biofilms with carbenicillin, which blocks cell division, and then measuring individual cell lengths by transmission electron microscopy. Cell elongation was localized at the air interface of the biofilm. The heterogeneous anabolic patterns measured inside these biofilms were likely a result of oxygen limitation in the biofilm. Oxygen microelectrode measurements showed that oxygen only penetrated approximately 50 microm into the biofilm. P. aeruginosa was incapable of anaerobic growth in the medium used for this investigation. These results show that while mature P. aeruginosa biofilms contain active, growing cells, they can also harbor large numbers of cells that are inactive and not growing.  相似文献   

6.
Biofilms consist of groups of bacteria attached to surfaces and encased in a hydrated polymeric matrix. Bacteria in biofilms are more resistant to the immune system and to antibiotics than their free-living planktonic counterparts. Thus, biofilm-related infections are persistent and often show recurrent symptoms. The metal chelator EDTA is known to have activity against biofilms of gram-positive bacteria such as Staphylococcus aureus. EDTA can also kill planktonic cells of Proteobacteria like Pseudomonas aeruginosa. In this study we demonstrate that EDTA is a potent P. aeruginosa biofilm disrupter. In Tris buffer, EDTA treatment of P. aeruginosa biofilms results in 1,000-fold greater killing than treatment with the P. aeruginosa antibiotic gentamicin. Furthermore, a combination of EDTA and gentamicin results in complete killing of biofilm cells. P. aeruginosa biofilms can form structured mushroom-like entities when grown under flow on a glass surface. Time lapse confocal scanning laser microscopy shows that EDTA causes a dispersal of P. aeruginosa cells from biofilms and killing of biofilm cells within the mushroom-like structures. An examination of the influence of several divalent cations on the antibiofilm activity of EDTA indicates that magnesium, calcium, and iron protect P. aeruginosa biofilms against EDTA treatment. Our results are consistent with a mechanism whereby EDTA causes detachment and killing of biofilm cells.  相似文献   

7.
This study analyzed macrophage inflammatory protein-2 (MIP-2) production and neutrophil recruitment in urinary tract in response to Pseudomonas aeruginosa in an ascending model of urinary tract infection (UTI) in mice. Both planktonic and biofilm cells of P. aeruginosa were used for inducing UTI in mice. MIP-2 levels determined in urine, bladder and kidney showed maximum MIP-2 production 6 h postinfection, which correlated with neutrophil recruitment. Biofilm cells showed significantly more MIP-2 production and neutrophil recruitment. However, no correlation between bacterial numbers and neutrophil recruitment was observed in urine and kidney tissue. The role of MIP-2 and neutrophils in relation to the persistence of P. aeruginosa in the urinary tract of mice is discussed.  相似文献   

8.
Pseudomonas aeruginosa is the major pathogenic bacteria in cystic fibrosis and other forms of bronchiectasis. Growth in antibiotic-resistant biofilms contributes to the virulence of this organism. Sodium nitrite has antimicrobial properties and has been tolerated as a nebulized compound at high concentrations in human subjects with pulmonary hypertension; however, its effects have not been evaluated on biotic biofilms or in combination with other clinically useful antibiotics. We grew P. aeruginosa on the apical surface of primary human airway epithelial cells to test the efficacy of sodium nitrite against biotic biofilms. Nitrite alone prevented 99% of biofilm growth. We then identified significant cooperative interactions between nitrite and polymyxins. For P. aeruginosa growing on primary CF airway cells, combining nitrite and colistimethate resulted in an additional log of bacterial inhibition compared to treating with either agent alone. Nitrite and colistimethate additively inhibited oxygen consumption by P. aeruginosa. Surprisingly, whereas the antimicrobial effects of nitrite in planktonic, aerated cultures are nitric oxide (NO) dependent, antimicrobial effects under other growth conditions are not. The inhibitory effect of nitrite on bacterial oxygen consumption and biofilm growth did not require NO as an intermediate as chemically scavenging NO did not block growth inhibition. These data suggest an NO-radical independent nitrosative or oxidative inhibition of respiration. The combination of nebulized sodium nitrite and colistimethate may provide a novel therapy for chronic P. aeruginosa airway infections, because sodium nitrite, unlike other antibiotic respiratory chain “poisons,” can be safely nebulized at high concentration in humans.  相似文献   

9.
The leading cause of morbidity and mortality in cystic fibrosis (CF) continues to be lung infections with Pseudomonas aeruginosa biofilms. Co-colonization of the lungs with P aeruginosa and Burkholderia cepacia can result in more severe pulmonary disease than P. aeruginosa alone. The interactions between P. aeruginosa biofilms and B. cepacia are not yet understood; one possible association being that mixed species biofilm formation may be part of the interspecies relationship. Using the Calgary Biofilm Device (CBD), members of all genomovars of the B. cepacia complex were shown to form biofilms, including those isolated from CF lungs. Mixed species biofilm formation between CF isolates of P. aeruginosa and B. cepacia was readily achieved using the CBD. Oxidation-fermentation lactose agar was adapted as a differential agar to monitor mixed biofilm composition. Scanning electron micrographs of the biofilms demonstrated that both species readily integrated in close association in the biofilm structure. Pseudomonas aeruginosa laboratory strain PAO1, however, inhibited mixed biofilm formation of both CF isolates and environmental strains of the B. cepacia complex. Characterization of the soluble inhibitor suggested pyocyanin as the active compound.  相似文献   

10.
A current question in biofilm research is whether biofilm-specific genetic processes can lead to differentiation in physiology and function among biofilm cells. In Pseudomonas aeruginosa, phenotypic variants which exhibit a small-colony phenotype on agar media and a markedly accelerated pattern of biofilm development compared to that of the parental strain are often isolated from biofilms. We grew P. aeruginosa biofilms in glass flow cell reactors and observed that the emergence of small-colony variants (SCVs) in the effluent runoff from the biofilms correlated with the emergence of plaque-forming Pf1-like filamentous phage (designated Pf4) from the biofilm. Because several recent studies have shown that bacteriophage genes are among the most highly upregulated groups of genes during biofilm development, we investigated whether Pf4 plays a role in SCV formation during P. aeruginosa biofilm development. We carried out immunoelectron microscopy using anti-Pf4 antibodies and observed that SCV cells, but not parental-type cells, exhibited high densities of Pf4 filaments on the cell surface and that these filaments were often tightly interwoven into complex latticeworks surrounding the cells. Moreover, infection of P. aeruginosa planktonic cultures with Pf4 caused the emergence of SCVs within the culture. These SCVs exhibited enhanced attachment, accelerated biofilm development, and large regions of dead and lysed cells inside microcolonies in a manner identical to that of SCVs obtained from biofilms. We concluded that Pf4 can mediate phenotypic variation in P. aeruginosa biofilms. We also performed partial sequencing and analysis of the Pf4 replicative form and identified a number of open reading frames not previously recognized in the genome of P. aeruginosa, including a putative postsegregational killing operon.  相似文献   

11.
The association of Cryptosporidium oocysts with biofilm communities can influence the propagation of this pathogen through both environmental systems and water treatment systems. We observed the capture and retention of C. parvum oocysts in Pseudomonas aeruginosa biofilms using laboratory flow cells. Biofilms were developed in two different growth media using two different strains of P. aeruginosa, a wild-type strain (PAO1) and a strain that overproduces the exopolysaccharide alginate (PDO300). Confocal laser-scanning microscopy was used in conjunction with image analysis to assess the structure of the biofilms prior to introducing oocysts into the flow cells. More oocysts were captured by the biofilm-coated surfaces than the abiotic glass surface in both media. There was no significant difference in capture across the two strains of P. aeruginosa biofilm, but the fraction of oocysts captured was positively related to biofilm roughness and surface-area-to-volume ratio. Once captured, oocysts were retained in the biofilm for more than 24 h and were not released after a 40-fold increase in the system flow rate. We believe the capture and retention of oocysts by biofilm communities can impact the environmental transmission of C. parvum, and this interaction should be taken into consideration when predicting the migration of pathogens in the environment.  相似文献   

12.
Chronic infections resulting from biofilm formation are difficult to eradicate with current antimicrobial agents and consequently new therapies are needed. This work demonstrates that the carbon monoxide-releasing molecule CORM-2, previously shown to kill planktonic bacteria, also attenuates surface-associated growth of the gram-negative pathogen Pseudomonas aeruginosa by both preventing biofilm maturation and killing bacteria within the established biofilm. CORM-2 treatment has an additive effect when combined with tobramycin, a drug commonly used to treat P. aeruginosa lung infections. CORM-2 inhibited biofilm formation and planktonic growth of the majority of clinical P. aeruginosa isolates tested, for both mucoid and non-mucoid strains. While CORM-2 treatment increased the production of reactive oxygen species by P. aeruginosa biofilms, this increase did not correlate with bacterial death. These data demonstrate that CO-RMs possess potential novel therapeutic properties against a subset of P. aeruginosa biofilm related infections.  相似文献   

13.
Biofilm formation by Pseudomonas aeruginosa is hypothesized to follow a developmental pattern initiated by attachment to a surface followed by microcolony formation and mature biofilm development. Swimming and twitching motility are important for attachment and biofilm development in P. aeruginosa. However, it is clear that many P. aeruginosa strains lacking swimming motility exist as biofilms in the lungs of cystic fibrosis patients. Consequently, we have developed a dynamic attachment assay to identify motility-independent attachment-defective mutants. Using transposon mutagenesis, we identified 14 novel dynamic attachment-deficient (dad) mutants including four mutants specific to dynamic assay conditions (dad specific). Two of the dad-specific mutants contain insertions in genes involved in sensing and responding to external stimuli, implying a significant impact of external factors on the biofilm developmental pathway. Observations of initial attachment and long-term biofilm formation characterized our dad mutants into two distinct classes: biofilm delayed and biofilm impaired. Biofilm-delayed mutants form wild-type biofilms but are delayed at least 24 h compared with the wild type, whereas biofilm-impaired mutants never form wild-type biofilms in our assays. We propose a dynamic model for attachment and biofilm formation in P. aeruginosa including these two classes.  相似文献   

14.
Pseudomonas aeruginosa colonizes and infects human tissues, although the mechanisms by which the organism evades the normal, predominantly neutrophilic, host defenses are unclear. Phenazine products of P. aeruginosa can induce death in Caenorhabditis elegans. We hypothesized that phenazines induce death of human neutrophils, and thus impair neutrophil-mediated bacterial killing. We investigated the effects of two phenazines, pyocyanin and 1-hydroxyphenazine, upon apoptosis of neutrophils in vitro. Pyocyanin induced a concentration- and time-dependent acceleration of neutrophil apoptosis, with 50 microM pyocyanin causing a 10-fold induction of apoptosis at 5 h (p < 0.001), a concentration that has been documented in sputum from patients colonized with P. aeruginosa. 1-hydroxyphenazine was without effect. In contrast to its rapid induction of neutrophil apoptosis, pyocyanin did not induce significant apoptosis of monocyte-derived macrophages or airway epithelial cells at time points up to 24 h. Comparison of wild-type and phenazine-deleted strains of P. aeruginosa showed a highly significant reduction in neutrophil killing by the phenazine-deleted strain. In clinical isolates of P. aeruginosa pyocyanin production was associated with a proapoptotic effect upon neutrophils in culture. Pyocyanin-induced neutrophil apoptosis was not delayed either by treatment with LPS, a powerfully antiapoptotic bacterial product, or in neutrophils from cystic fibrosis patients. Pyocyanin-induced apoptosis was associated with rapid and sustained generation of reactive oxygen intermediates and subsequent reduction of intracellular cAMP. Treatment of neutrophils with either antioxidants or synthetic cAMP analogues significantly abrogated pyocyanin-induced apoptosis. We conclude that pyocyanin-induced neutrophil apoptosis may be a clinically important mechanism of persistence of P. aeruginosa in human tissue.  相似文献   

15.
Anerobic biofilms with dominantly acidogenic bacteria were grown in fixed-bed recycle reactors. The influence of calcium concentration in the culture medium on biofilm mass accumulation, immobilized calcium concentration, and biofilm-specific activity was investigated. The results indicate that the biofilm mass accumulation was increased by the presence of calcium in the growth medium when calcium concentration was not higher than 120mg/L. Calcium accumulated in the biofilms increased in proportion to the calcium level in the feed. The biofilms for an increased input calcium concentration showed a trend of decrease in specific activity. The biofilms with a thickeness of less than 0.5 mm had the highest specific activity. The optimum calcium concentration for substrate consumption by the biofilms was 100 to 120 mg/L. The biofilms transferred from higher calcium medium to lower calcium medium were more susceptible to sloughing from their support surfaces, which indicates calcium's role in the stability of the biofilm structure. (c) 1995 John Wiley & Sons, Inc.  相似文献   

16.
The newly described green-pigmented bacterium Pseudoalteromonas tunicata (D2) produces target-specific inhibitory compounds against bacteria, algae, fungi, and invertebrate larvae and is frequently found in association with living surfaces in the marine environment. As part of our studies on the ecology of P. tunicata and its interaction with marine surfaces, we examined the ability of P. tunicata to form biofilms under continuous culture conditions within the laboratory. P. tunicata biofilms exhibited a characteristic architecture consisting of differentiated microcolonies surrounded by water channels. Remarkably, we observed a repeatable pattern of cell death during biofilm development of P. tunicata, similar to that recently reported for biofilms of Pseudomonas aeruginosa (J. S. Webb et al., J. Bacteriol. 185:4585-4595, 2003). Killing and lysis occurred inside microcolonies, apparently resulting in the formation of voids within these structures. A subpopulation of viable cells was always observed within the regions of killing in the biofilm. Moreover, extensive killing in mature biofilms appeared to result in detachment of the biofilm from the substratum. A novel 190-kDa autotoxic protein produced by P. tunicata, designated AlpP, was found to be involved in this biofilm killing and detachment. A Delta alpP mutant derivative of P. tunicata was generated, and this mutant did not show cell death during biofilm development. We propose that AlpP-mediated cell death plays an important role in the multicellular biofilm development of P. tunicata and subsequent dispersal of surviving cells within the marine environment.  相似文献   

17.
Aims:  To evaluate the antimicrobial activities of aspirin, EDTA and an aspirin-EDTA (A-EDTA) combination against Pseudomonas aeruginosa , Escherichia coli and Candida albicans in planktonic and biofilm cultures.
Methods and Results:  Minimal inhibitory concentrations (MIC) and minimal biocidal concentrations (MBC) were determined using twofold broth microdilution and viable counting methods, respectively. Aspirin's recorded MIC values ranged from 1·2 to 2·7 mg ml−1. Checkerboard assay demonstrated a synergism in antimicrobial activity upon combination. Aspirin's minimal biofilm eradication concentration values (MBEC) against the established biofilms ranged between 1·35 and 3·83 mg ml−1. A complete eradication of bacterial biofilms was achieved after a 4-h treatment with the A-EDTA combination.
Conclusion:  Both aspirin and EDTA possess broad-spectrum antimicrobial activity for both planktonic and biofilm cultures. Aspirin used at the MBEC for 24 h was successful in eradicating P. aeruginosa , E. coli and C. albicans biofilms established on abiotic surfaces. Moreover, the exposure to the A-EDTA combination (4 h) effected complete bacterial biofilm eradication.
Significance and Impact of the Study:  There is a continuous need for the discovery of new antimicrobial agents. Aspirin and EDTA are 'nonantibiotic drugs', the combination of which can be used successfully to treat and eradicate biofilms established on abiotic surfaces.  相似文献   

18.
19.
Environmental biofilms often contain mixed populations of different species. In these dense communities, competition between biofilm residents for limited nutrients such as iron can be fierce, leading to the evolution of competitive factors that affect the ability of competitors to grow or form biofilms. We have discovered a compound(s) present in the conditioned culture fluids of Pseudomonas aeruginosa that disperses and inhibits the formation of biofilms produced by the facultative plant pathogen Agrobacterium tumefaciens. The inhibitory activity is strongly induced when P. aeruginosa is cultivated in iron-limited conditions, but it does not function through iron sequestration. In addition, the production of the biofilm inhibitory activity is not regulated by the global iron regulatory protein Fur, the iron-responsive extracytoplasmic function σ factor PvdS, or three of the recognized P. aeruginosa quorum-sensing systems. In addition, the compound(s) responsible for the inhibition and dispersal of A. tumefaciens biofilm formation is likely distinct from the recently identified P. aeruginosa dispersal factor, cis-2-decenoic acid (CDA), as dialysis of the culture fluids showed that the inhibitory compound was larger than CDA and culture fluids that dispersed and inhibited biofilm formation by A. tumefaciens had no effect on biofilm formation by P. aeruginosa.  相似文献   

20.
Recent studies have indicated that biosurfactants produced by Pseudomonas aeruginosa play a role both in maintaining channels between multicellular structures in biofilms and in dispersal of cells from biofilms. Through the use of flow cell technology and enhanced confocal laser scanning microscopy, we have obtained results which suggest that the biosurfactants produced by P. aeruginosa play additional roles in structural biofilm development. We present genetic evidence that during biofilm development by P. aeruginosa, biosurfactants promote microcolony formation in the initial phase and facilitate migration-dependent structural development in the later phase. P. aeruginosa rhlA mutants, deficient in synthesis of biosurfactants, were not capable of forming microcolonies in the initial phase of biofilm formation. Experiments involving two-color-coded mixed-strain biofilms showed that P. aeruginosa rhlA mutants were defective in migration-dependent development of mushroom-shaped multicellular structures in the later phase of biofilm formation. Experiments involving three-color-coded mixed-strain P. aeruginosa biofilms demonstrated that the wild-type and rhlA and pilA mutant strains formed distinct subpopulations on top of each other dependent on their ability to migrate and produce biosurfactants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号