共查询到20条相似文献,搜索用时 8 毫秒
1.
Site-directed mutagenesis by overlap extension using the polymerase chain reaction 总被引:495,自引:0,他引:495
Overlap extension represents a new approach to genetic engineering. Complementary oligodeoxyribonucleotide (oligo) primers and the polymerase chain reaction are used to generate two DNA fragments having overlapping ends. These fragments are combined in a subsequent 'fusion' reaction in which the overlapping ends anneal, allowing the 3' overlap of each strand to serve as a primer for the 3' extension of the complementary strand. The resulting fusion product is amplified further by PCR. Specific alterations in the nucleotide (nt) sequence can be introduced by incorporating nucleotide changes into the overlapping oligo primers. Using this technique of site-directed mutagenesis, three variants of a mouse major histocompatibility complex class-I gene have been generated, cloned and analyzed. Screening of mutant clones revealed at least a 98% efficiency of mutagenesis. All clones sequenced contained the desired mutations, and a low frequency of random substitution estimated to occur at approx. 1 in 4000 nt was detected. This method represents a significant improvement over standard methods of site-directed mutagenesis because it is much faster, simpler and approaches 100% efficiency in the generation of mutant product. 相似文献
2.
Gene splicing and site-directed mutagenesis (SDM) are important to introduce desired sequences in target DNA. However, introducing mutations at multiple sites requires multiple steps of DNA manipulation, which is time-consuming and labor-intensive. Here, we present a rapid efficient gene splicing and multi-sited mutagenesis method that introduces mutations at two distant sites via sequential connection of DNA fragments by one-step overlap extension polymerase chain reaction (OE-PCR). This bottom-up approach for DNA engineering can be broadly used to study protein structure-function, to optimize codon use for protein expression, and to assemble genes of interest. 相似文献
3.
Gene splicing and mutagenesis by PCR-driven overlap extension 总被引:2,自引:0,他引:2
Extension of overlapping gene segments by PCR is a simple, versatile technique for site-directed mutagenesis and gene splicing. Initial PCRs generate overlapping gene segments that are then used as template DNA for another PCR to create a full-length product. Internal primers generate overlapping, complementary 3' ends on the intermediate segments and introduce nucleotide substitutions, insertions or deletions for site-directed mutagenesis, or for gene splicing, encode the nucleotides found at the junction of adjoining gene segments. Overlapping strands of these intermediate products hybridize at this 3' region in a subsequent PCR and are extended to generate the full-length product amplified by flanking primers that can include restriction enzyme sites for inserting the product into an expression vector for cloning purposes. The highly efficient generation of mutant or chimeric genes by this method can easily be accomplished with standard laboratory reagents in approximately 1 week. 相似文献
4.
We present a simple, single-step, single-tube, and rapid method for introducing a series of mutations into cloned DNA. Polymerase chain reaction (PCR)-based mutagenesis methods have become very prevalent due to their simplicity and efficiency for introducing mutations. Our method, overlap-primer-walk PCR, has several advantages over other published methods. It uses two common oligodeoxyribonucleotides and a series of overlapping primers specific for various mutations. Once common flanking primers are selected, two to three mutations require only one additional primer. Therefore, this method is very useful for introduction of multiple mutations in various sites of the target DNA. We illustrate the usefulness of the method by introducing several mutations into the human TNF-α encoding gene. 相似文献
5.
Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension 总被引:221,自引:0,他引:221
Gene splicing by overlap extension is a new approach for recombining DNA molecules at precise junctions irrespective of nucleotide sequences at the recombination site and without the use of restriction endonucleases or ligase. Fragments from the genes that are to be recombined are generated in separate polymerase chain reactions (PCRs). The primers are designed so that the ends of the products contain complementary sequences. When these PCR products are mixed, denatured, and reannealed, the strands having the matching sequences at their 3' ends overlap and act as primers for each other. Extension of this overlap by DNA polymerase produces a molecule in which the original sequences are 'spliced' together. This technique is used to construct a gene encoding a mosaic fusion protein comprised of parts of two different class-I major histocompatibility genes. This simple and widely applicable approach has significant advantages over standard recombinant DNA techniques. 相似文献
6.
7.
A step-wise method for cloning intron-containing genes from genomic DNA is described. The two exons of the human proinsulin
gene were separately amplified in two steps using, in the first step, completely homologous primers. This reduces unwanted
interactions between mismatched primers and a complex DNA template such as genomic DNA. The fragments were amplified in a
second step polymerase chain reaction (PCR) using mismatched primers that incorporated additional bases complementary to the
other exon, and these products were spliced together in a third step PCR. 相似文献
8.
Michael H. Martin-Harris Paul A. Bartley Alexander A. Morley 《Analytical biochemistry》2010,399(2):308-310
We developed a simple and robust method for removing nonspecific amplification produced during gene walking with a gene-specific primer and a degenerate primer. The primary walking polymerase chain reaction (PCR) was followed by two or three PCR rounds, each incorporating a low concentration of a reverse hybrid primer, where the 3′ end was bound to a target sequence generated in the preceding PCR round and the 5′ end was a new sequence that generated a target sequence for the next PCR round. The low concentration of the hybrid primer and the extent of amplicon stem-loop formation inhibited nonspecific amplification and enabled successful walking along three genes. 相似文献
9.
Methods for introducing multiple site-directed mutations are important experimental tools in molecular biology. Research areas that use these methods include the investigation of various protein modifications in cellular processes, modifying proteins for efficient recombinant expression, and the stabilization of mRNAs to allow for increased protein expression. Introducing multiple site-directed mutations is also an important tool in the field of synthetic biology. There are two main methods used in the assembling of fragments generated by mutagenic primers: enzymatic assembly and overlap extension polymerase chain reaction (OE–PCR). In this article, we present an improved OE–PCR method that can be used for the generation of large DNA fragments (up to 7.4 kb) where at least 13 changes can be introduced using a genomic template. The improved method is faster (due to fewer reaction steps) and more accurate (due to fewer PCR cycles), meaning that it can effectively compete with the enzymatic assembly method. Data presented here show that the site-directed mutations can be introduced anywhere between 50 and 1800 bp from each other. The method is highly reliable and predicted to be applicable to most DNA engineering when the introduction of multiple changes in a DNA sequence is required. 相似文献
10.
Construction of mutant and chimeric genes using the polymerase chain reaction. 总被引:29,自引:10,他引:29 下载免费PDF全文
In the polymerase chain reaction (PCR) the specific amplification of a small segment of DNA within a complex DNA sample is effected by repeated cycles of DNA denaturation and enzymatic synthesis primed by two oligonucleotides complementary to regions within opposite strands of the DNA. In this report a simple and efficient method is described in which PCR methodology is used to introduce specific mutations into a double stranded DNA molecule. In this procedure a supercoiled plasmid DNA serves as template for a PCR in which a primer bearing the mutated sequence is incorporated into the amplified product. The presence of convenient restriction sites in the mutagenic primer and in the amplified DNA permit direct replacement of a wild type DNA segment with the mutated segment by treating the PCR mixture with the appropriate restriction endonucleases followed by DNA ligase. Using this procedure, a single amino acid replacement, a 16 amino acid deletion and a replacement of four amino acids with a twelve amino acid segment from another membrane protein were introduced into the amino terminal signal segment of rat hepatic cytochrome P450b (P450IIB1). 相似文献
11.
The polymerase chain reaction (PCR) is used widely to recover rRNA genes from naturally occurring communities for analysis of population constituents. We have found that this method can result in differential amplification of different rRNA genes. In particular, rDNAs of extremely thermophilic archaebacteria often cannot be amplified by the usual PCR methods. The addition of 5% (wt/vol) acetamide to a PCR mixture containing both archaebacterial and yeast DNA templates minimized nonspecific annealing of the primers and prevented preferential amplification of the yeast small-subunit rRNA genes. 相似文献
12.
A L Reysenbach L J Giver G S Wickham N R Pace 《Applied and environmental microbiology》1992,58(10):3417-3418
The polymerase chain reaction (PCR) is used widely to recover rRNA genes from naturally occurring communities for analysis of population constituents. We have found that this method can result in differential amplification of different rRNA genes. In particular, rDNAs of extremely thermophilic archaebacteria often cannot be amplified by the usual PCR methods. The addition of 5% (wt/vol) acetamide to a PCR mixture containing both archaebacterial and yeast DNA templates minimized nonspecific annealing of the primers and prevented preferential amplification of the yeast small-subunit rRNA genes. 相似文献
13.
《Biochemical education》1999,27(4):237-239
A practical class experiment on the PCR is described which has been used over several years as part of an undergraduate biochemistry and molecular biology course for science students. A major aim is to provide experience in the use of the polymerase chain reaction (PCR) and its interpretation. Students are given small coded DNA samples and use the PCR reaction to determine whether the sample is from a male or a female. 相似文献
14.
The discovery of new intron-containing human tRNA genes using the polymerase chain reaction 总被引:3,自引:0,他引:3
Introns in transfer RNA genes are rare in vertebrates. Until now, the only intron-containing human tRNA genes were believed to be those coding for tRNA(Tyr). All of these introns are inserted 3' to the anticodon position in these genes. We have designed polymerase chain reaction primers that can amplify all of the tRNA(Tyr) genes for cloning and sequencing by using the conserved portions of the gene coding for the structural part of the tRNA. Our preliminary results have revealed five tRNA(Tyr) genes, each of which contains a different intron. We used the same technique to amplify, clone, and sequence the human genes for tRNA(Leu)CAA. This has resulted in the discovery that this human tRNA gene family also has introns inserted 3' to the anticodon. This polymerase chain reaction technique is useful in detecting new families of intron-containing tRNA genes as well as identifying sequence variations in the introns of individual genes. 相似文献
15.
16.
Characterization of Superoxide dismutase genes from Gram-positive bacteria by polymerase chain reaction using degenerate primers 总被引:13,自引:0,他引:13
Abstract An internal fragment representing approximately 85% of sod genes from seven Gram-positive bacteria was amplified by using degenerate primers in a polymerase chain reaction assay. The DNA sequences of sod polymerase chain reaction products from Clostridium perfringens, Enterococcus faecalis, Enterococcus faecium, Lactococcus lactis, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus pneumoniae , and Streptococcus pyogenes were determined. Comparisons of their deduced amino acid sequences with those of the corresponding regions of the SOD proteins from Bacillus stearothermophilus, Listeria monocytogenes , and Streptococcus mutans revealed strong relatedness. Phylogenetic analysis of SOD peptides showed that members of the genera Streptococcus and those of the genera Enterococcus constitute two well-supported monophyletic groups. The method described in this study provides a means for easy recovery of sod genes and the construction of sod mutants of various Gram-positive pathogens. 相似文献
17.
A mathematical notation is introduced to represent, at a symbolic level, different mechanisms of DNA recombination, and a 'PCR lemma' is proven by analytically describing the combinatorial properties of the polymerase chain reaction process. This approach led to the discovery of novel techniques, based on a form of PCR which we called cross pairing PCR (briefly XPCR). They were mathematically analyzed and already experimentally proven in different contexts, such as DNA extraction and recombination. Thus, a mathematical analysis of standard methodologies may highlight novel mechanisms of DNA recombination and this can provide new technologies for DNA manipulation. 相似文献
18.
Detection of Listeria monocytogenes by using the polymerase chain reaction. 总被引:5,自引:5,他引:5 下载免费PDF全文
M T Bessesen Q A Luo H A Rotbart M J Blaser R T Ellison rd 《Applied microbiology》1990,56(9):2930-2932
A method was developed for detection of Listeria monocytogenes by polymerase chain reaction amplification followed by agarose gel electrophoresis or dot blot analysis with a 32P-labeled internal probe. The technique identified 95 of 95 L. monocytogenes strains, 0 of 12 Listeria strains of other species, and 0 of 12 non-Listeria strains. 相似文献
19.
Detection of Mycoplasma pulmonis was examined by using the polymerase chain reaction (PCR) for amplifying a specific DNA sequence. In gel electrophoresis which was conducted to detect the amplified products, only 1 pg of M. pulmonis DNA could be detected following 30 cycles of amplification, while no amplified product was detected even from 1 microgram of M. arthritidis or M. neurolyticum DNA. Furthermore, 10 colony-forming units of M. pulmonis could be detected by direct amplification from the mycoplasma suspension. These results suggest the usefulness of the PCR as a highly sensitive, specific, and rapid method for direct detection of M. pulmonis. 相似文献
20.
Efficient amplification using 'megaprimer' by asymmetric polymerase chain reaction. 总被引:8,自引:2,他引:8 下载免费PDF全文
A K Datta 《Nucleic acids research》1995,23(21):4530-4531