首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aux/IAA proteins are phosphorylated by phytochrome in vitro   总被引:22,自引:0,他引:22       下载免费PDF全文
  相似文献   

2.
3.
Arabidopsis SHY2/IAA3 inhibits auxin-regulated gene expression   总被引:1,自引:0,他引:1       下载免费PDF全文
Tian Q  Uhlir NJ  Reed JW 《The Plant cell》2002,14(2):301-319
In Arabidopsis, SHY2 encodes IAA3, a member of the auxin-induced Aux/IAA family. Gain-of-function mutations in SHY2/IAA3 cause enlarged cotyledons, short hypocotyls, and altered auxin-regulated root development. Here we show that the gain-of-function mutation shy2-2 decreases both the induction and repression of auxin-regulated genes, suggesting that SHY2/IAA3 acts as a negative regulator in auxin signaling. shy2-2 affects auxin induction of many previously characterized primary response genes, implying that it might repress primary auxin responses. In addition, shy2-2 also affects expression of multiple auxin-nonresponsive genes. Light regulates expression of SHY2/IAA3, suggesting a possible link between light and auxin response pathways.  相似文献   

4.
5.
6.
A semi-dominant mutant suppressor of hy2 (shy2-1D) of Arabidopsis thaliana, originally isolated as a photomorphogenesis mutant, shows altered auxin responses. Recent molecular cloning revealed that the SHY2 gene is identical to the IAA3 gene, a member of the primary auxin-response genes designated the Aux/IAA gene family. Because Aux/IAA proteins are reported to interact with auxin response factors, we investigated the pattern of expression of early auxin genes in the iaa3/shy2-1D mutant. RNA hybridization analysis showed that levels of mRNA accumulation of the early genes were reduced dramatically in the iaa3/shy2-1D mutants, although auxin still enhanced gene expression in the iaa3/shy2-1D mutant. Histochemical analysis using a fusion gene of the auxin responsive domain (AuxRD) and the GUS gene showed no IAA-inducible GUS expression in the root elongation zone of the iaa3/shy2-1D mutant. On the other hand, ectopic GUS expression occurred in the hypocotyl, cotyledon, petiole and root vascular tissues in the absence of auxin. These results suggest that IAA3/SHY2 functions both negatively and positively on early auxin gene expression.  相似文献   

7.
8.
9.
10.
Auxin action in a cell-free system   总被引:24,自引:0,他引:24  
  相似文献   

11.
12.
13.
The AXR6 gene is required for auxin signaling in the Arabidopsis embryo and during postembryonic development. One of the effects of auxin is to stimulate degradation of the Aux/IAA auxin response proteins through the action of the ubiquitin protein ligase SCF(TIR1). Here we show that AXR6 encodes the SCF subunit CUL1. The axr6 mutations affect the ability of mutant CUL1 to assemble into stable SCF complexes resulting in reduced degradation of the SCF(TIR1) substrate AXR2/IAA7. In addition, we show that CUL1 is required for lateral organ initiation in the shoot apical meristem and the inflorescence meristem. These results indicate that the embryonic axr6 phenotype is related to a defect in SCF function and accumulation of Aux/IAA proteins such as BDL/IAA12. In addition, we show that CUL1 has a role in auxin response throughout the life cycle of the plant.  相似文献   

14.
IAA17/AXR3: biochemical insight into an auxin mutant phenotype   总被引:22,自引:0,他引:22       下载免费PDF全文
The Aux/IAA genes are rapidly and specifically induced by the plant hormone auxin. The proteins encoded by this gene family are short-lived nuclear proteins that are capable of homodimerizing and heterodimerizing. Molecular, biochemical, and genetic data suggest that these proteins are involved in auxin signaling. The pleiotropic morphological phenotype and altered auxin responses of the semidominant axr3-1 mutant of Arabidopsis result from a single amino acid change in the conserved domain II of the Aux/IAA protein IAA17. Here, we show that the biochemical effect of this gain-of-function mutation is to increase the half-life of the iaa17/axr3-1 protein by sevenfold. Intragenic mutations that suppress the iaa17/axr3-1 phenotype have been described. The iaa17/axr3-1R3 revertant contains a second site mutation in domain I and the iaa17/axr3-1R2 revertant contains a second site mutation in domain III. Transient expression assays show that the mutant forms of IAA17/AXR3 retain the ability to accumulate in the nucleus. Using the yeast two hybrid system, we show that the iaa17/axr3-1 mutation does not affect homodimerization. However, the iaa17/axr3-1 revertants counteract the increased levels of iaa17/axr3-1 protein by decreasing the capacity of the mutant protein to homodimerize. Interestingly, heterodimerization of the revertant forms of IAA17/AXR3 with IAA3/SHY2, another Aux/IAA protein, and ARF1 or ARF5/MP proteins is affected only by changes in domain III. Collectively, the results provide biochemical evidence that the revertant mutations in the IAA17/AXR3 gene affect the capacity of the encoded protein to dimerize with itself, other members of the Aux/IAA protein family, and members of the ARF protein family. By extension, these findings may provide insight into the effects of analogous mutations in other members of the Aux/IAA gene family.  相似文献   

15.
生长素是最重要的植物激素之一,对植物生长发育起着关键调控作用。生长素作用于植物后,早期生长素响应基因家族Aux/IAA、GH3和SAUR等被迅速诱导,基因表达上调。其中Aux/IAA基因家族编码的蛋白一般由4个保守结构域组成,结构域Ⅰ具有抑制生长素信号下游基因表达的作用,结构域Ⅱ在生长素信号转导中主要被TIR1调控进而影响Aux/IAA的稳定性,结构域Ⅲ/Ⅳ通过与生长素响应因子ARF相互作用调控生长素信号。Aux/IAA基因家族在双子叶植物拟南芥(Arabidopsis thaliana)的器官发育、根形成、茎伸长和叶扩张等方面发挥重要作用;在单子叶植物水稻(Oryza sativa)和小麦(Triticum aestivum)中,主要影响根系发育和株型,但大多数Aux/IAA基因的功能尚不清楚。该文主要从Aux/IAA蛋白的结构、功能和生长素信号转导途径方面综述Aux/IAA家族在拟南芥、禾谷类作物及其它植物中的研究进展,以期为全面揭示Aux/IAA家族基因的生物学功能提供线索。  相似文献   

16.
17.
In Arabidopsis thaliana, lateral root (LR) formation is regulated by multiple auxin/indole-3-acetic acid (Aux/IAA)-AUXIN RESPONSE FACTOR (ARF) modules: (i) the IAA28-ARFs module regulates LR founder cell specification; (ii) the SOLITARY-ROOT (SLR)/IAA14-ARF7-ARF19 module regulates nuclear migration and asymmetric cell divisions of the LR founder cells for LR initiation; and (iii) the BODENLOS/IAA12-MONOPTEROS/ARF5 module also regulates LR initiation and organogenesis. The number of Aux/IAA-ARF modules involved in LR formation remains unknown. In this study, we isolated the shy2-101 mutant, a gain-of-function allele of short hypocotyl2/suppressor of hy2 (shy2)/iaa3 in the Columbia accession. We demonstrated that the shy2-101 mutation not only strongly inhibits LR primordium development and emergence but also significantly increases the number of LR initiation sites with the activation of LATERAL ORGAN BOUNDARIES-DOMAIN16/ASYMMETRIC LEAVES2-LIKE18, a target gene of the SLR/IAA14-ARF7-ARF19 module. Genetic analysis revealed that enhanced LR initiation in shy2-101 depended on the SLR/IAA14-ARF7-ARF19 module. We also showed that the shy2 roots contain higher levels of endogenous IAA. These observations indicate that the SHY2/IAA3-ARF-signalling module regulates not only LR primordium development and emergence after SLR/IAA14-ARF7-ARF19 module-dependent LR initiation but also inhibits LR initiation by affecting auxin homeostasis, suggesting that multiple Aux/IAA-ARF modules cooperatively regulate the developmental steps during LR formation.  相似文献   

18.
Roles and activities of Aux/IAA proteins in Arabidopsis.   总被引:12,自引:0,他引:12  
Auxin induces various distinct developmental responses, partly by regulating gene expression. The Aux/IAA genes are a large gene family, many of which are induced by auxin. Work on Arabidopsis Aux/IAA genes has begun to reveal that they can regulate development and auxin-induced gene expression. Furthermore, auxin responses require Aux/IAA protein turnover. Finally, recent evidence suggests that Aux/IAA proteins can mediate light responses. Work in the near future should test whether Aux/IAA proteins are antennae that connect auxin and light signals to endogenous developmental responses.  相似文献   

19.
In Arabidopsis thaliana, lateral root (LR) formation is regulated by multiple auxin/indole-3-acetic acid (Aux/IAA)–AUXIN RESPONSE FACTOR (ARF) modules: (i) the IAA28–ARFs module regulates LR founder cell specification; (ii) the SOLITARY-ROOT (SLR)/IAA14–ARF7–ARF19 module regulates nuclear migration and asymmetric cell divisions of the LR founder cells for LR initiation; and (iii) the BODENLOS/IAA12–MONOPTEROS/ARF5 module also regulates LR initiation and organogenesis. The number of Aux/IAA–ARF modules involved in LR formation remains unknown. In this study, we isolated the shy2-101 mutant, a gain-of-function allele of short hypocotyl2/suppressor of hy2 (shy2)/iaa3 in the Columbia accession. We demonstrated that the shy2-101 mutation not only strongly inhibits LR primordium development and emergence but also significantly increases the number of LR initiation sites with the activation of LATERAL ORGAN BOUNDARIES-DOMAIN16/ASYMMETRIC LEAVES2-LIKE18, a target gene of the SLR/IAA14–ARF7–ARF19 module. Genetic analysis revealed that enhanced LR initiation in shy2-101 depended on the SLR/IAA14–ARF7–ARF19 module. We also showed that the shy2 roots contain higher levels of endogenous IAA. These observations indicate that the SHY2/IAA3–ARF-signalling module regulates not only LR primordium development and emergence after SLR/IAA14–ARF7–ARF19 module-dependent LR initiation but also inhibits LR initiation by affecting auxin homeostasis, suggesting that multiple Aux/IAA–ARF modules cooperatively regulate the developmental steps during LR formation.  相似文献   

20.
Auxin: regulation, action, and interaction   总被引:48,自引:0,他引:48  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号