首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glycosphingolipids of human thyroid were isolated and characterized by gas-liquid chromatography and sequential enzymic hydrolysis. The major purified components were identified as glucosyl- and galactosyl-ceramides, lactosyl- and galabiosylceramides, globotriaosyl- and globotetraosylceramides. The long-chain base analyses showed a high proportion of phytosphingosine in glycosylceramide and galabiosylceramide. Fatty acids in 22:0, 24:0, 24:1 prevailed, especially in the cerebroside fraction, with a significant content of alpha-hydroxylated species in galactosylceramide. Female thyroid had a very low content of galabiosylceramide and a higher content of glucosylceramide, as compared to male. No significant difference was found in the other neutral glycosphingolipids and gangliosides.  相似文献   

2.
The influence of Graves' disease in human thyroid neutral glycosphingolipids was investigated. The major alteration was in the cerebroside fraction. Although the total amount of cerebroside was not different, the relative proportion of the bands of glucosylceramide separated on borated thin-layer plates was greatly modified in the disease. The band of glucosylceramide containing phytosphingosine and hydroxylated fatty acids decreased strongly, whereas the band with C18 sphingosine and normal fatty acids increased simultaneously. No change was observed in the content of galabiosylceramide. A slight elevation was seen in the amount of globoside at the expense of globotriaosylceramide.  相似文献   

3.
Glycosphingolipid-enriched domains are hot spots for cell signaling within plasma membranes and are characterized by the enrichment of glycosphingolipids. A role for glucosylceramide-based glycosphingolipids in phospholipase C-mediated inositol 1,4,5-trisphosphate formation has been previously documented. These earlier studies utilized a first generation glucosylceramide synthase inhibitor to deplete cells of their glycosphingolipids. Recently, more active and specific glucosylceramide synthase inhibitors, including d-threo-ethylendioxyphenyl-2-palmitoylamino-3-pyrrolidinopropanol (d-t-EtDO-P4), have been designed. d-t-EtDO-P4 has the advantage of blocking glucosylceramide synthase at low nanomolar concentrations but does not cause secondary elevations in cell ceramide levels. In the present study, d-t-EtDO-P4 depleted cellular glucosylceramide and lactosylceramide in cultured ECV304 cells at nanomolar concentrations without obvious cellular toxicity. The expression of several signaling proteins was evaluated in glycosphingolipid-depleted ECV304 cells to study the role of glycosphingolipids in phospholipase C-mediated signaling. No difference was observed in the cellular expression of phospholipase C-gamma between controls and glycolipid-depleted cells. Western blot analysis, however, revealed that depletion of endogenous glycosphingolipids in cultured ECV304 cells with d-t-EtDO-P4 induced tyrosine phosphorylation of phospholipase C-gamma in a concentration-dependent manner with maximum induction at 100 nm. The phosphorylation of phospholipase C-gamma induced by d-t-EtDO-P4 was abolished by exogenously added glucosylceramide, consistent with a specific glycosphingolipid-phospholipase C-gamma interaction. The phospholipase C-gamma phosphorylation was maximally enhanced by bradykinin when cells were exposed to 100 nm d-t-EtDO-P4. The measurement of cellular activity of phospholipase C-gamma, by myo-inositol 1,4,5-trisphosphate radioreceptor assay, demonstrated that depletion of glucosylceramide-based glycosphingolipids in cultured ECV304 cells with d-t-EtDO-P4 resulted in significantly increased formation of inositol 1,4,5-trisphosphate above base line, and an increased sensitivity of phospholipase C-gamma to bradykinin stimulation. Thus, the activation of phospholipase C-gamma is negatively regulated by membrane glycosphingolipids in ECV304 cells.  相似文献   

4.
Diploid human infant skin fibroblasts cultured from normal infants and Gaucher disease infants, with genetically defective lysosomal glucosylceramide:beta-glucohydrolase activity, had a full range of homologous glycosphingolipids from the simplest (glucosylceramide) to higher neutral derivatives (lactosyl-, trihexosyl- and tetrahexosylceramide) and anionic sialo derivatives (gangliosides) (sialosyllactosyl-, disialosyllactosyl-, sialosylgangliotriaosyl-, and mono- and disialosylgangliotetraosylceramide). Although excessive storage of glucosylceramide in histiocytes is pathognomonic for Gaucher disease, we found that Gaucher disease fibroblasts contained 1.23 +/- 0.08 nmol of glucosylceramide/mg cell protein; normal infant cells, 1.11 +/- 0.48. When we aged infantile Gaucher disease fibroblasts for 20 days beyond their confluency state, we found no increased accumulation of glucosylceramide, but a 1.5-2-fold increase in trihexosylceramide, sialosylgangliotetraosylceramide, and disialosyllactosylceramide. Gaucher disease fibroblasts took up and could not degrade but, instead, effectively converted pulse-chase 3-O-[3H]glucosylceramide supplied in the growth medium in liposomes into higher glycosphingolipids, especially the plasma membrane ganglioside, sialosyllactosylceramide. When grown with extracellular particulate [3H]glucosylceramide, infantile Gaucher fibroblasts localized it and higher labeled homologues in the plasma membrane; glucosylceramide did not accumulate in the lysosomes. These findings indicate that fibroblasts that are genetically deficient in lysosomal glucosylceramide:beta-glucosidase avoid pathological lysosomal accumulation by relegating undegradable glucosylceramide to an anabolic compartment where glucosylceramide is converted into more highly glycosylated glycosphingolipids.  相似文献   

5.
Previous work has led to the identification of inhibitors of glucosylceramide synthase, the enzyme catalyzing the first glycosylation step in the synthesis of glucosylceramide-based glycosphingolipids. These inhibitors have two identified sites of action: the inhibition of glucosylceramide synthase, resulting in the depletion of cellular glycosphingolipids, and the inhibition of 1-O-acylceramide synthase, resulting in the elevation of cell ceramide levels. A new series of glucosylceramide synthase inhibitors based on substitutions in the phenyl ring of a parent compound, 1-phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (P4), was made. For substitutions of single functional groups, the potency of these inhibitors in blocking glucosylceramide synthase was primarily dependent upon the hydrophobic and electronic properties of the substituents. An exponential relationship was found between the IC50 of each inhibitor and the sum of derived hydrophobic (pi) and electronic (sigma) parameters. This relationship demonstrated that substitutions that increased the electron-donating characteristics and decreased the lipophilic characteristics of the homologues enhanced the potency of these compounds in blocking glucosylceramide formation. A novel compound was subsequently designed and observed to be even more active in blocking glucosylceramide formation. This compound, D-threo-4'-hydroxy-P4, inhibited glucosylceramide synthase at an IC50 of 90 nM. In addition, a series of dioxane substitutions was designed and tested. These included 3',4'-methylenedioxyphenyl-, 3',4'-ethylenedioxyphenyl-, and 3'4'-trimethylenedioxyphenyl-substituted homologues. D-threo-3', 4'-Ethylenedioxy-P4-inhibited glucosylceramide synthase was comparably active to the p-hydroxy homologue. 4'-Hydroxy-P4 and ethylenedioxy-P4 blocked glucosylceramide synthase activity at concentrations that had little effect on 1-O-acylceramide synthase activity. These novel inhibitors resulted in the inhibition of glycosphingolipid synthesis in cultured cells at concentrations that did not significantly raise intracellular ceramide levels or inhibit cell growth.  相似文献   

6.
The neuropathic glycosphingolipidoses are a subgroup of lysosomal storage disorders for which there are no effective therapies. A potential approach is substrate reduction therapy using inhibitors of glucosylceramide synthase (GCS) to decrease the synthesis of glucosylceramide and related glycosphingolipids that accumulate in the lysosomes. Genz-529468, a blood-brain barrier-permeant iminosugar-based GCS inhibitor, was used to evaluate this concept in a mouse model of Sandhoff disease, which accumulates the glycosphingolipid GM2 in the visceral organs and CNS. As expected, oral administration of the drug inhibited hepatic GM2 accumulation. Paradoxically, in the brain, treatment resulted in a slight increase in GM2 levels and a 20-fold increase in glucosylceramide levels. The increase in brain glucosylceramide levels might be due to concurrent inhibition of the non-lysosomal glucosylceramidase, Gba2. Similar results were observed with NB-DNJ, another iminosugar-based GCS inhibitor. Despite these unanticipated increases in glycosphingolipids in the CNS, treatment nevertheless delayed the loss of motor function and coordination and extended the lifespan of the Sandhoff mice. These results suggest that the CNS benefits observed in the Sandhoff mice might not necessarily be due to substrate reduction therapy but rather to off-target effects.  相似文献   

7.
The effect of injected bovine TSH on the pattern of anti-T(4) and anti-T(3) immunostaining of the thyroid tissue was examined in rainbow trout (Oncorhynchus mykiss) and medaka (Oryzias latipes) to determine if the previously reported immunostaining of the cytoplasm of thyrocytes is due to the presence of colloid pinocytotic vesicles and is thus indicative of thyroid hormone release. We hypothesized that the number of immunostained thyrocytes should increase following a TSH challenge, and this should parallel other indicators of increased thyroid activity. In medaka, immunostained thyrocytes were only found following the TSH challenge, and were most marked after 24 to 72 hours; the immunostaining was associated with large colloid-filled cytoplasmic vesicles. In trout, the number and staining intensity of immunostained thyrocytes were increased after the TSH challenge; the immunostaining was present throughout the cytoplasm of the thyrocytes. These findings support the working hypothesis that the immunostaining of the thyrocytes is associated with the pinocytosis of thyroglobulin by the thyrocytes in parallel with an increase in release of thyroid hormone, and that this investigational approach provides a reliable indicator of thyroid hormone release activity.  相似文献   

8.
We have developed a high-performance liquid chromatographic (HPLC) procedure for separation of O-acetyl-N-p-nitrobenzoyl derivatives of six neutral glycosphingolipids: glucosylceramide, lactosylceramide, globotriaosylceramide, lactotriaosylceramide, globotetraosylceramide, and neolactotetraosylceramide. The recoveries of glucosylceramide and globotetraosylceramide for the derivatization procedure and HPLC analysis were approximately 75%, and one nanomole of glycolipid could be detected. The procedure was used for analysis of human erythrocyte neutral glycolipids.  相似文献   

9.
The modulatory role of endogenous cellular glycosphingolipids in bradykinin-stimulated myo-inositol 1,4,5-trisphosphate (InsP3) formation by MDCK cells was evaluated utilizing the glucosylceramide synthase inhibitor, threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP). Bradykinin-stimulated InsP3 formation in intact cells and in isolated plasma membranes was significantly enhanced when cells were first depleted of their glucosphingolipids. The effect of glucosphingolipid depletion on phospholipase C activity was dependent on the duration of exposure to the inhibitor and the cellular level of glucosylceramide. Inclusion of glucosylceramide in the culture medium prevented the stimulatory effect of PDMP on InsP3 formation. It is concluded that membrane glucosphingolipids may regulate phospholipase C activity.  相似文献   

10.
Chemotaxis induction is a major effect evoked by stimulation of the chemokine receptor CXCR4 with its sole ligand CXCL12. We now report that treatment of CHP-100 human neuroepithelioma cells with the glucosylceramide synthase (GCS) inhibitor DL-threo-1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol inhibits CXCR4-dependent chemotaxis. We provide evidence that the phenomenon is not due to unspecific effects of the inhibitor employed and that inhibition of GCS neither affects total or plasmamembrane CXCR4 expression, nor CXCL12-induced Ca(2+) mobilization. The effects of the GCS inhibitor on impairment of CXCL12-induced cell migration temporally correlated with a pronounced downregulation of neutral glycosphingolipids, particularly glucosylceramide, and with a delayed and more moderate downregulation of gangliosides; moreover, exogenously administered glycosphingolipids allowed resumption of CXCR4-dependent chemotaxis. Altogether our results provide evidence, for the first time, for a role glycosphingolipids in sustaining CXCL12-induced cell migration.  相似文献   

11.
Bovine milk was found to contain, in soluble form, an enzyme which transfers galactose from UDPgalactose to glucosylceramide. This enzyme was partially purified by the same procedure used to isolate the galactosyltransferase of lactose synthetase. The partially purified enzyme required detergents for activity, had a pH optimum of 7.2--7.3 and required Mn2+. The apparent Km calculated for glucosylceramide was 1.33 . 10(-4) M. With glucosylceramide as acceptor the product of the reaction was identified as lactosylceramide by autoradiography on thin-layer chromatograms. Lactosylceramide was also an effective acceptor for the transferase reaction but neutral glycosphingolipids or gangliosides with terminal galactose of N-acetylgalactosamine residues were ineffective or poorly effective as acceptors. Addition of alpha-lactalbumin inhibited the transferase reaction.  相似文献   

12.
We have performed comparative studies of the neutral glycosphingolipids synthesized by three human myeloid leukemia cell lines, K562, KG1, and HL-60, which were metabolically labeled with [14C]galactose, to evaluate changes in neutral glycosphingolipid synthesis with myeloid cell differentiation. Individual neutral glycosphingolipids containing one to four sugars were purified by a combination of the following methods: diethylaminoethyl-Sephadex column chromatography, acetylation-Florisil column chromatography, and high-performance liquid chromatography using an Iatrobead column. Compounds with one sugar were analyzed by thin-layer chromatography on borate plates. This analysis showed that HL-60 cells synthesize only glucosylceramide, whereas K562 and KG1 cells synthesize predominately glucosylceramide, but also a small amount of galactosylceramide. Compounds with two to four sugars were characterized by treatment with exo- and endoglycosidases. The results showed that K562 and KG1 cells are similar to cells from patients with acute leukemia in expressing two series (globo and neolacto) of natural glycosphingolipids, whereas the HL-60 cells are similar to mature human myeloid cells in expressing only one series (neolacto). Therefore, human myeloid leukemia cells blocked at different stages of differentiation vary in their ability to synthesize neutral glycosphingolipids.  相似文献   

13.
Gangliosides, sialic acid-containing glycosphingolipids, are membrane constituents of vertebrates and are known to have important roles in cellular differentiation, adhesion, and recognition. We report here the isolation of a bacterium capable of degrading gangliotetraose-series gangliosides and a new method for the production of glucosylceramide with this bacterium. GM1a ganglioside was found to be sequentially degraded by Paenibacillus sp. strain TS12, which was isolated from soil, as follows: GM1a --> asialo GM1 --> asialo GM2 --> lactosylceramide --> glucosylceramide. TS12 was found to produce a series of ganglioside-degrading enzymes, such as sialidases, beta-galactosidases, and beta-hexosaminidases. TS12 also produced beta-glucosidases, but glucosylceramide was somewhat resistant to the bacterial enzyme under the conditions used. Taking advantage of the specificity, we developed a new method for the production of glucosylceramide using TS12 as a biocatalyst. The method involves the conversion of crude bovine brain gangliosides to glucosylceramide by coculture with TS12 and purification of the product by chromatography with Wakogel C-300 HG.  相似文献   

14.
Effects of calpain inhibitors on thyroid follicle conversion into monolayer was investigated. Human and rat primary thyroid cultures require the follicular structure after enzyme disaggregation of native tissue fragments. Removal of thyroid-stimulating hormone (TSH) from the culture medium causes migration of thyrocytes from follicles into monolayer, some differences were noted in conversion of rat and human thyroid follicles. The locomotion of rat thyrocytes is observed after preliminary incubation with TSH, but migration of thyrocytes from human thyroid follicles does not require such a preincubation. Phorbol esters induce migration of rat and human thyroid cells. Calpain inhibitors exert a significant influence on locomotion of the thyroid gland cells induced by the removal of TSH from the culture medium. Human thyrocyte migration is markedly inhibited by calpain inhibitor I or II. Likewise, addition of calpain inhibitor I into primary culture of rat thyrocytes decreased the number of migrating cells by 52%, and shortened average migration distance by 34%. Also, calpain inhibitors reduced the speed of phorbol ether-induced conversion of rat and human thyroid follicles into monolayer.  相似文献   

15.
The composition, structure and localization of neutral glycosphingolipids of human aorta taken from subjects who had died after myocardial infarction were studied. Individual glycosphingolipids were purified by high-performance liquid chromatography and were characterized on the basis of their chromatographic mobility, carbohydrate composition, methylation analysis and by 1H-NMR spectroscopy. The main aortic glycosphingolipids were identified as glucosylceramide, lactosylceramide, globotriaosylceramide and globotetraosylceramide. Significant differences in the neutral glycosphingolipid composition of intima and media were detected. The neutral glycosphingolipid profile of medial plaques resembled that of unaffected media; however, significant differences were detected between intimal plaques and unaffected intima. Whereas the latter contained trihexosylceramide and globoside as the only neutral glycolipids, the intimal plaque glycolipids consisted mainly of glucosylceramide and also contained appreciable amounts of lactosylceramide which were completely absent in the unaffected intima. In comparison to intimal plaques, unaffected intima is characterized by a much higher content of cerebrosides terminating by beta-galactosyl residues which are known to interact with growth factors and other external stimuli. It thus seems possible that the proliferative activity of smooth muscle cells in atherosclerotic diseases is to some extent associated with their neutral glycolipid profile.  相似文献   

16.
Usually, human thyrocytes in primary culture rapidly lose their thyroid function and fail to synthesize or release thyroid hormone after 3-5 days of culture. By culturing thyroid follicles obtained from patients with Graves' disease in medium supplemented with TSH and a low concentration of fetal calf serum (1%), thyrocytes can maintain thyroid function for several days. We have found that the addition of dimethylsulfoxide to culture medium (1.7%) furthermore enhanced and maintained thyroid function (de novo synthesis and release of [125I] thyroxine) for more than 13 days, probably by inhibiting dedifferentiation of thyrocytes. The present bioassay will be also useful for detecting thyroid stimulating immunoglobulin in patients with Graves' disease.  相似文献   

17.
We have compared the domain forming properties of three neutral acyl chain defined glycosphingolipids differing in their head group structures. The aim of the study was to explore if glycosphingolipids and sterols exist in the same lateral domains in bilayer membranes and how the structure of the head group influences the capacity of the glycosphingolipids to colocalize with cholesterol. The glycosphingolipids used in the study were galactosyl-, glucosyl- and lactosylceramides with a palmitic acid in the N-linked position. Domain formation in mixed bilayer vesicles was examined using fluorescent reporter molecules associating with ordered domains, together with a fluorescence quencher lipid in the disordered membrane phase. Our results show that the glycosphingolipids studied were poor in forming sterol-enriched domains compared to palmitoyl-sphingomyelin as detected by cholestatrienol quenching. However, the tendency to associate with cholesterol was clearly dependent on the carbohydrate structure of the glycosphingolipids, also when two glycosphingolipids with different head groups were mixed in the bilayer. All palmitoylated glycosphingolipids associated with palmitoyl-sphingomyelin/cholesterol domains. Our results show that the head group structures of neutral glycosphingolipids markedly affect their domain forming properties in bilayers both with and without cholesterol. The most striking observation being that large differences in domain forming properties were seen even between glucosylceramide and galactosylceramide, which differ only in the stereochemistry of one hydroxyl group in the carbohydrate head group.  相似文献   

18.
Glycosphingolipids of human aorta   总被引:1,自引:0,他引:1  
The structures of the main gangliosides of human aorta (intima and media) were elucidated. The main component (67%) was identified as N-acetylneuraminosyl-lactosylceramide (ganglioside GM3). The aorta tissue contained also gangliosides GM1, GD3, GD1a, and GT1. All sialic acid residues in gangliosides were present as N-acetyl-neuraminosyl derivatives. Among neutral glycosphingolipids of human aorta, the main components were identified as glucosylceramide, lactosylceramide, globotriaosylceramide and globotetraosylceramide. The preliminary data suggest that the composition of the investigated glycosphingolipids in tissue might vary upon atherosclerosis lesions of aorta.  相似文献   

19.
Major neutral glycosphingolipids were isolated from human plasma and their structures and fatty acid compositions studied. The four neutral glycosphingolipids of plasma were characterized as Glc beta(1 leads to 1)ceramide, Gal beta(1 leads to 1)- ceramide, Gal beta(1 leads to 4) Glc beta (1 leads to 1)ceramide, Gal alpha(1 leads to 4) Gal beta(1 leads to 4) Glc beta(1 leads to 1)ceramide and GalNAc beta(1 leads to 3) Gal (1 leads to 4) Gal (1 leads to 4) Glc beta(1 leads to 1)-ceramide. The glycosphingolipids contained mostly short chain fatty acids of which most prominent was C16. Erythrocyte glucosylceramide and lactosylceramide exhibited similar fatty acid compositions as their plasma counterparts. Triglycosylceramide and globoside of erythrocytes contained almost exclusively long-chain fatty acids. In lactosylceramide obtained from "p" erythrocytes, an accumulation of long-chain fatty acids was found; this accumulation was not observed, however, in lactosylceramide isolated from "p" plasma. It was concluded that plasma and erythrocyte glycosphingolipids are synthesized at separate sites where short- and long-chain fatty acids, respectively, are available. Plasma and erythrocyte glucosylceramide, and probably a fraction of lactosylceramide, exchange between plasma and erythrocyte pools. The latter conclusion is discussed in the light of the relative roles of carbohydrate and lipid moieties of the glycosphingolipids in maintaining their association with erythrocyte membranes.  相似文献   

20.
Previous studies have shown that the glycoprotein oligosaccharides synthesized by adult Schistosoma mansoni, the organism responsible for human schistosomiasis, are unusual in that they contain terminal beta-GalNAc residues and lack sialic acid. These observations and other studies indicating that schistosome glycoproteins and glycolipids are antigenic in infected animals led us to investigate the structures of the glycosphingolipids synthesized by these organisms and to determine whether they are structurally related to those synthesized by their vertebrate hosts. For our studies, adult schistosomes were metabolically radiolabeled with either [3H]galactose or [3H]glucosamine, and the newly synthesized glycosphingolipids were isolated and characterized. The major glycosphingolipids synthesized by adult schistosomes were found to be galactosylceramide and glucosylceramide. The adult worms synthesized no lactosylceramide (Gal beta 1-4Glc-ceramide), a common constituent of vertebrate cells; however, another disaccharide-containing glycosphingolipid cleavable by ceramide glycanase was found. The results of compositional and methylation analyses and exoglycosidase treatments demonstrated that this ceramide-disaccharide has the structure GalNAc beta 1-4Glc-ceramide. We also found that extracts of adult schistosomes are unable to transfer Gal from UDP-Gal to glucosylceramide, whereas extracts of Chinese hamster ovary cells, as a control, are able to do so, confirming that schistosomes are unable to synthesize lactosylceramide. Low levels of higher molecular weight glycosphingolipids were also found to be synthesized by adult schistosomes, and although their levels were too small to allow definitive characterization, compositional analyses indicated that they also contained GalNAc. We have tentatively designated the new disaccharide structure GalNAc beta 1, 4Glc- the "schistocore", which may represent a new type of glycosphingolipid core series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号