首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apart from the ribosome, the crystal structure of the bacterial RNase P in complex with a tRNA, reported by Reiter and colleagues recently, constitutes the first example of a multiple turnover RNA enzyme. Except in rare exceptions, RNase P is ubiquitous and, like the ribosome, is older than the initial branch point of the phylogenetic tree. Importantly, the structure shows how the RNA and the protein moieties cooperate to process the pre-tRNA substrates. The catalytic site comprises some critical RNA residues spread over the secondary structure but gathered in a compact volume next to the protein, which helps recognize and orient the substrate. The discussion here outlines some important aspects of that crystal structure, some of which could apply to RNA molecules in general.  相似文献   

2.
3.
Bacteriophage Qβ utilizes some host cell translation factors during replication. Previously, we constructed a kinetic model that explains replication of long RNA molecules by Qβ replicase. Here, we expanded the previous kinetic model to include the effects of ribosome concentration on RNA replication. The expanded model quantitatively explained single- and double-strand formation kinetics during replication with various ribosome concentrations for two artificial long RNAs. This expanded model and the knowledge obtained in this study provide useful frameworks to understand the precise replication mechanism of Qβ replicase with ribosomes and to design amplifiable RNA genomes in translation-coupling systems.  相似文献   

4.
SYNOPSIS. Comparison of RNA molecules between certain protozoa using the technic of nucleic acid hybridisation revealed that there are complementary sequences for ribosomal RNA molecules in the genomes of such cells. Furthermore the genes for ribosomal RNA have been conserved during evolution in this group of organisms. On the other hand, RNA molecules from these protozoa which can be considered to be "messengers" show little in the way of sequence relationships. By utilising the technic of hybridisation it was found that Oxytricha can compete effectively against Paramecium ribosomal RNA for Tetrahymena DNA but the ribosomal RNA sequences of the latter could not compete completely against Paramecium ribosomal RNA for Oxytricha DNA. The result is interpreted to show that different ribosomal sequences were hybridising with each of the DNA samples from Tetrahymena and Oxytricha. A general interpretation of this result in terms of ribosome evolution is presented.  相似文献   

5.
6.
We have established that 5′-CG-3′ dinucleotide and 5′-CNG-3′ trinucleotide are found in published sequences of small interfering RNA and microRNA more often than they should be in random DNA sequences. This circumstance indicates the important biological role played by 5′-CG-3′ dinucleotides and 5′-CNG-3′ trinucleotides in small RNA sequences. We suggest that small RNAs containing these di- and trinucleotides participate in the creation of chromatin marks of epigenetic information through a highly specific search for repressible DNA sequences and through the initiation of the methylation de novo of 5′-CG-3′ and 5′-CNG-3′ sites in DNA fragments appearing to be bound complementary to small RNAs. Several genes can be inactivated simultaneously if they contain the motif recognized by small RNA. Allelic exclusion appears, in our opinion, as a result of initiation by small RNAs of DNA methylation de novo of all but one of the alleles that exist in the cell. The predecessor of this small RNA is transcribed from the antiparallel allele chain. Alleles whose antiparallel chains are less actively read by RNA polymerase, which, as we suggest, in the process of transcribing, releases DNA from small RNA bound to it, are inactivated. However, the quantity of small RNA transcribed from only one allele is insufficient to overcome the level above which the repression process of this allele is initiated de novo.  相似文献   

7.
潘学峰  姜楠  陈细芳  周晓宏  丁良  段斐 《遗传》2014,36(12):1185-1194
R-环是由一个RNA:DNA杂交体和一条单链状态的DNA分子共同组成的三链核酸结构。其中, RNA:DNA杂交体的形成起因于基因转录所合成的RNA分子不能与模板分开, 或RNA分子重新与一段双链DNA分子中的一条链杂交。在基因转录过程中, 当转录泡遇到富含G碱基的非模板链区或位于某些与人类疾病有关的三核苷酸卫星DNA时, 转录泡后方累积的负超螺旋可促进R环形成。同时, 新生RNA分子未被及时加工、成熟或未被快速转运到细胞质等因素也会催生R环。研究表明, 细胞拥有多种管理R环的方法, 可以有效地管理R环的形成和处理已经形成的R环, 以尽量避免R环对DNA复制、基因突变和同源重组产生不利影响。文章重点分析了R-环的形成机制及R环对DNA复制、基因突变和同源重组的影响, 并针对R-环诱导的DNA复制在某些三核苷酸重复扩增有关的神经肌肉退行性疾病发生过程中的作用进行了分析和讨论。  相似文献   

8.
Evolution of the ribosome from an RNA catalyst suggests that the intrinsic folding pathway of the rRNA dictates the hierarchy of ribosome assembly. To address this possibility, we probed the tertiary folding pathway of the 5' domain of the Escherichia coli 16S rRNA at 20 ms intervals using X-ray-dependent hydroxyl radical footprinting. Comparison with crystallographic structures and footprinting reactions on native 30S ribosomes showed that the RNA formed all of the predicted tertiary interactions in the absence of proteins. In 20 mM MgCl2, many tertiary interactions appeared within 20 ms. By contrast, interactions between H6, H15 and H17 near the spur of the 30S ribosome evolved over several minutes, likely due to mispairing of a central helix junction. The kinetic folding pathway of the RNA corresponded to the expected order of protein binding, suggesting that the RNA folding pathway forms the basis for early steps of ribosome assembly.  相似文献   

9.
RNA structures contain many bulges and loops that are expected to be sites for inter- and intra-molecular interactions. Nucleotides in the bulge are expected to influence the structure and recognition of RNA. The same stability is assigned to all trinucleotide bulged RNA in the current secondary structure prediction models. In this study thermal denaturation experiments were performed on four trinucleotide bulged RNA, in the context of HIV-1 TAR RNA, to determine whether the bulge sequence affects RNA stability and its divalent ion interactions. Cytosine-rich bulged RNA were more stable than uracil-rich bulged RNA in 1 M KCl. Interactions of divalent ions were more favorable with uracil-rich bulged RNA by ~2 kcal/mol over cytosine-rich bulged RNA. The UCU-TAR RNA (wild type) is stabilized by 1.7 kcal/mol in 9.5 mM Ca2+ as compared with 1 M KCl, whereas no additional gain in stability is measured for CCC-TAR RNA. These results have implications for base substitution experiments traditionally employed to identify metal ion binding sites. To our knowledge, this is the first systematic study to quantify the effect of small sequence changes on RNA stability upon interactions with divalent ions.  相似文献   

10.
11.
12.
A detailed knowledge of the mapping between sequence and structure spaces in populations of RNA molecules is essential to better understand their present-day functional properties, to envisage a plausible early evolution of RNA in a prebiotic chemical environment and to improve the design of in vitro evolution experiments, among others. Analysis of natural RNAs, as well as in vitro and computational studies, show that certain RNA structural motifs are much more abundant than others, pointing out a complex relation between sequence and structure. Within this framework, we have investigated computationally the structural properties of a large pool (108 molecules) of single-stranded, 35 nt-long, random RNA sequences. The secondary structures obtained are ranked and classified into structure families. The number of structures in main families is analytically calculated and compared with the numerical results. This permits a quantification of the fraction of structure space covered by a large pool of sequences. We further show that the number of structural motifs and their frequency is highly unbalanced with respect to the nucleotide composition: simple structures such as stem-loops and hairpins arise from sequences depleted in G, while more complex structures require an enrichment of G. In general, we observe a strong correlation between subfamilies—characterized by a fixed number of paired nucleotides—and nucleotide composition. Our results are compared to the structural repertoire obtained in a second pool where isolated base pairs are prohibited.  相似文献   

13.
14.
Comparative analysis of ribosomal RNA (rRNA) sequences has elucidated phylogenetic relationships. However, this powerful approach has not been fully exploited to address ribosome function. Here we identify stretches of evolutionarily conserved sequences, which correspond with regions of high functional importance. For this, we developed a structurally aligned database, FLORA (full-length organismal rRNA alignment) to identify highly conserved nucleotide elements (CNEs) in 23S–28S rRNA from each phylogenetic domain (Eukarya, Bacteria, and Archaea). Universal CNEs (uCNEs) are conserved in sequence and structural position in all three domains. Those in regions known to be essential for translation validate our approach. Importantly, some uCNEs reside in areas of unknown function, thus identifying novel sequences of likely great importance. In contrast to uCNEs, domain-specific CNEs (dsCNEs) are conserved in just one phylogenetic domain. This is the first report of conserved sequence elements in rRNA that are domain-specific; they are largely a eukaryotic phenomenon. The locations of the eukaryotic dsCNEs within the structure of the ribosome suggest they may function in nascent polypeptide transit through the ribosome tunnel and in tRNA exit from the ribosome. Our findings provide insights and a resource for ribosome function studies.  相似文献   

15.
In the liver of rats fed the azocarcinogen 3'-methyl-4-dimethylaminoazobenzene (3'MeDAB) reiterated RNA sequence transcribed from middle repetitive DNA are released into the cytoplasm. The same repetitive nucleotide sequences can be isolated from the chromatin of the liver of control animals in the form of metabolically highly active, 13 000 daltons RNA. This small, chromatin-associated RNA originates from nuclear RNA larger than 10 S. The discontinuation of the feeding of the azocarcinogen will not stop the release of the nuclear reiterated RNA sequences into the cytoplasm. The repetitive sequences of nuclear RNA which are released into the cytoplasm in animals fed the azocarcinogen can no longer be found in the chromatin in the form of small RNA molecules. The results can be explained by the assumption that the reiterated RNA sequences are involved in the upholding of RNA processing. A cell-specific processing of RNA will be maintained by the interaction of reiterated RNA fragments from already processed RNA with the reiterated complementary sequences on RNA yet to be processed. Existence of such a feed-back circuit would make it possible to explain how a temporary interference of the azocarcinogen with RNA processing will result in the disappearance of specific reiterated RNA sequences from the chromatin. It could also explain the continuation of the release of the same repeated RNA sequences into the cytoplasm as part of larger RNA molecules even after the removal of the carcinogen.  相似文献   

16.
RNA function is determined by its structural organization. The RNA structure consists of the combination of distinct secondary structure motifs connected by junctions that play an essential role in RNA folding. Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) probing is an established methodology to analyze the secondary structure of long RNA molecules in solution, which provides accurate data about unpaired nucleotides. However, the residues located at the junctions of RNA structures usually remain undetected. Here we report an RNA probing method based on the use of a novel open-paddlewheel diruthenium (OPW-Ru) compound [Ru2Cl2(µ-DPhF)3(DMSO)] (DPhF = N,N′-diphenylformamidinate). This compound has four potential coordination sites in a singular disposition to establish covalent bonds with substrates. As a proof of concept, we have analyzed the reactivity of OPW-Ru toward RNA using two viral internal ribosome entry site (IRES) elements whose function depends on the structural organization of the molecule. Our study suggests that the compound OPW-Ru preferentially attacks at positions located one or two nucleotides away from junctions or bulges of the RNA structure. The OPW-Ru fingerprinting data differ from that obtained by other chemical reagents and provides new information about RNA structure features.  相似文献   

17.
The many interactions of tRNA with the ribosome are fundamental to protein synthesis. During the peptidyl transferase reaction, the acceptor ends of the aminoacyl and peptidyl tRNAs must be in close proximity to allow peptide bond formation, and their respective anticodons must base pair simultaneously with adjacent trinucleotide codons on the mRNA. The two tRNAs in this state can be arranged in two nonequivalent general configurations called the R and S orientations, many versions of which have been proposed for the geometry of tRNAs in the ribosome. Here, we report the combined use of computational analysis and tethered hydroxyl-radical probing to constrain their arrangement. We used Fe(II) tethered to the 5' end of anticodon stem-loop analogs (ASLs) of tRNA and to the 5' end of deacylated tRNA(Phe) to generate hydroxyl radicals that probe proximal positions in the backbone of adjacent tRNAs in the 70S ribosome. We inferred probe-target distances from the resulting RNA strand cleavage intensities and used these to calculate the mutual arrangement of A-site and P-site tRNAs in the ribosome, using three different structure estimation algorithms. The two tRNAs are constrained to the S configuration with an angle of about 45 degrees between the respective planes of the molecules. The terminal phosphates of 3'CCA are separated by 23 A when using the tRNA crystal conformations, and the anticodon arms of the two tRNAs are sufficiently close to interact with adjacent codons in mRNA.  相似文献   

18.
Messenger RNA transport was studied in KB cells infected with the nuclear DNA virus adenovirus type 2. Addition of 0.04 µg/ml of actinomycin completes the inhibition of ribosome synthesis normally observed late after infection and apparently does not alter the pattern of viral RNA synthesis: Hybridization-inhibition experiments indicate that similar viral RNA sequences are transcribed in cells treated or untreated with actinomycin. The polysomal RNA synthesized during a 2 hr labeling period in the presence of actinomycin is at least 60% viral specific. Viral messenger RNA transport can occur in the absence of ribosome synthesis. When uridine-3H is added to a late-infected culture pretreated with actinomycin, viral RNA appears in the cytoplasm at 10 min, but the polysomes do not receive viral RNA-3H until 30 min have elapsed. Only 25% of the cytoplasmic viral RNA is in polyribosomes even when infected cells have been labeled for 150 min. The nonpolysomal viral RNA in cytoplasmic extracts sediments as a broad distribution from 10S to 80S and does not include a peak cosedimenting with 45S ribosome subunits. The newly formed messenger RNA that is ribosome associated is not equally distributed among the ribosomes; by comparison to polyribosomes, 74S ribosomes are deficient at least fivefold in receipt of new messenger RNA molecules.  相似文献   

19.
[γ-32P]GTP-Labeled Qβ 6S RNA yielded only one major radioactive oligonucleotide after digestion with pancreatic ribonuclease. Nearest neighbor analysis of this 5′-oligonucleotide demonstrated that approximately 95% of the molecules terminate with the same sequence, pppGpGpCp. This sequence is the complement of the only major 3′-sequence found in this RNA. Both strands of 6S RNA therefore appear to have identical 3′- and 5′-terminal trinucleotide sequences.  相似文献   

20.
Single-molecule fluorescence microscopy experiments on RNA molecules brought to light the highly complex dynamics of key biological processes, including RNA folding, catalysis of ribozymes, ligand sensing of riboswitches and aptamers, and protein synthesis in the ribosome. By using highly advanced biophysical spectroscopy techniques in combination with sophisticated biochemical synthesis approaches, molecular dynamics of individual RNA molecules can be observed in real time and under physiological conditions in unprecedented detail that cannot be achieved with bulk experiments. Here, we review recent advances in RNA folding and functional studies of RNA and RNA-protein complexes addressed by using single-molecule Förster (fluorescence) resonance energy transfer (smFRET) technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号