共查询到9条相似文献,搜索用时 4 毫秒
1.
Rhein induces apoptosis in HL-60 cells via reactive oxygen species-independent mitochondrial death pathway 总被引:4,自引:0,他引:4
Rhein is an anthraquinone compound enriched in the rhizome of rhubarb, a traditional Chinese medicine herb showing anti-tumor promotion function. In this study, we first reported that rhein could induce apoptosis in human promyelocytic leukemia cells (HL-60), characterized by caspase activation, poly(ADP)ribose polymerase (PARP) cleavage, and DNA fragmentation. The efficacious induction of apoptosis was observed at 100 microM for 6h. Mechanistic analysis demonstrated that rhein induced the loss of mitochondrial membrane potential (DeltaPsi(m)), cytochrome c release from mitochondrion to cytosol, and cleavage of Bid protein. Rhein also induced generation of reactive oxygen species (ROS) and the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 kinase. However, these actions seem not to be associated with the apoptosis induction because antioxidants including N-acetyl cysteine (NAC), Tiron, and catalase did not block rhein-induced apoptosis, although they could block the generation of ROS and the phosphorylation of JNK and p38 kinase. Our data demonstrate that rhein induces apoptosis in HL-60 cells via a ROS-independent mitochondrial death pathway. 相似文献
2.
Precision-cut liver slices in culture (PCLS) appears as a useful and widely used model for metabolic studies; the interest to develop an adequate cryopreservation procedure, which would allow maintaining cell integrity upon incubation, is needed to extend its use for human tissues. We have previously shown that cryopreservation of rat PCLS leads to caspase-3 activation and early alterations of their K+ content upon incubation. In this study, we tested the hypothesis that counteracting intracellular K+ loss and/or interfering with cell death signaling pathways could improve the viability of cryopreserved PCLS. PCLS were prepared from male Wistar rat liver and cryopreserved by rapid freezing before incubation. The addition of a caspase inhibitor-Z-DEVD-FMK (2.5 microM)-in the culture medium did not improve viability of cryopreserved PCLS. Incubation of cryopreserved PCLS in a K+ rich medium (135 mM) increased K+ content and avoided caspase-3 activation, but did not improve cell viability. Caspase-3 inhibition, a decrease in cell lysis, and improvement of glycogen content were observed in cryopreserved PCLS after addition of LiCl (100 mM) in the incubation medium. These results indicate that, even if caspase-3 activation is linked to the K+ loss in cryopreserved PCLS, its inhibition does not allow restoring the metabolic capacities. LiCl, acting on a target upstream of caspase-3 inhibition, improves cell viability and allows glycogen accumulation when added in culture medium of cryopreserved PCLS; and could thus be considered as an interesting adjuvant in the culture of cryopreserved PCLS. 相似文献
3.
Yamaguchi T Hashiguchi K Katsuki S Iwamoto W Tsuruhara S Terada S 《Cellular & molecular biology letters》2008,13(1):49-57
We previously demonstrated that caspase-3, an executioner of apoptosis, is activated in the pressure-induced apoptosis of
murine erythroleukemia (MEL) cells (at 100 MPa). Here, we examined the pathway of caspase-3 activation using peptide substrates
and caspase inhibitors. Using the substrates of caspases-8 and -9, it was found that both are activated in cells under high
pressure. The production of nuclei with sub-G1 DNA content in 100 MPa-treated MEL cells was suppressed by inhibitors of caspases-8
and -9, and pan-caspase. In 100 MPa-treated cells, pan-caspase inhibitor partially prevented the cytochrome c release from the mitochondria and the breakdown of mitochondrial membrane potential. These results suggest that the intrinsic
and extrinsic pathways are activated in apoptotic signaling during the high pressure-induced death of MEL cells. 相似文献
4.
Regulation of oxidative phosphorylation,the mitochondrial membrane potential,and their role in human disease 总被引:1,自引:0,他引:1
Hüttemann M Lee I Pecinova A Pecina P Przyklenk K Doan JW 《Journal of bioenergetics and biomembranes》2008,40(5):445-456
Thirty years after Peter Mitchell was awarded the Nobel Prize for the chemiosmotic hypothesis, which links the mitochondrial membrane potential generated by the proton pumps of the electron transport chain to ATP production by ATP synthase, the molecular players involved once again attract attention. This is so because medical research increasingly recognizes mitochondrial dysfunction as a major factor in the pathology of numerous human diseases, including diabetes, cancer, neurodegenerative diseases, and ischemia reperfusion injury. We propose a model linking mitochondrial oxidative phosphorylation (OxPhos) to human disease, through a lack of energy, excessive free radical production, or a combination of both. We discuss the regulation of OxPhos by cell signaling pathways as a main regulatory mechanism in higher organisms, which in turn determines the magnitude of the mitochondrial membrane potential: if too low, ATP production cannot meet demand, and if too high, free radicals are produced. This model is presented in light of the recently emerging understanding of mechanisms that regulate mammalian cytochrome c oxidase and its substrate cytochrome c as representative enzymes for the entire OxPhos system. 相似文献
5.
Yeast cytochrome c peroxidase (CCP) efficiently catalyzes the reduction of H2O2 to H2O by ferrocytochrome c in vitro. The physiological function of CCP, a heme peroxidase that is targeted to the mitochondrial intermembrane space of Saccharomyces cerevisiae, is not known. CCP1-null-mutant cells in the W303-1B genetic background (ccp1Δ) grew as well as wild-type cells with glucose, ethanol, glycerol or lactate as carbon sources but with a shorter initial doubling time. Monitoring growth over 10 days demonstrated that CCP1 does not enhance mitochondrial function in unstressed cells. No role for CCP1 was apparent in cells exposed to heat stress under aerobic or anaerobic conditions. However, the detoxification function of CCP protected respiring mitochondria when cells were challenged with H2O2. Transformation of ccp1Δ with ccp1W191F, which encodes the CCPW191F mutant enzyme lacking CCP activity, significantly increased the sensitivity to H2O2 of exponential-phase fermenting cells. In contrast, stationary-phase (7-day) ccp1Δ-ccp1W191F exhibited wild-type tolerance to H2O2, which exceeded that of ccp1Δ. Challenge with H2O2 caused increased CCP, superoxide dismutase and catalase antioxidant enzyme activities (but not glutathione reductase activity) in exponentially growing cells and decreased antioxidant activities in stationary-phase cells. Although unstressed stationary-phase ccp1Δ exhibited the highest catalase and glutathione reductase activities, a greater loss of these antioxidant activities was observed on H2O2 exposure in ccp1Δ than in ccp1Δ-ccp1W191F and wild-type cells. The phenotypic differences reported here between the ccp1Δ and ccp1Δ-ccp1W191F strains lacking CCP activity provide strong evidence that CCP has separate antioxidant and signaling functions in yeast. 相似文献
6.
Summary Previous work has shown that the monoclonal antibody 22/18 identifies progenitor cells (blastemal cells) which depend on the nerve for their division in the early stages of limb regeneration in the newt,Notophthalmus viridescens. This antibody also reacts with cultured cells derived from the newt limb, and the intensity of immunoreactivity appears related to cell density and differentiation into myotubes. We report here that the monoclonal antibody 22/18 recognizes a polypeptide (22/18 antigen) which is intracellular and filamentous. Double staining of cells with 22/18 monoclonal antibody and antibodies against various cytoskeletal components indicates that the epitope is expressed on an intermediate filament component. Although this antibody is specific for blastemal cells in cryostat sections of the regenerating limb, its reactivity on immunoblots is not confined to this tissue. The 22/18 antigen is differentially affected by aldehyde fixatives distinguished by the spacing of their reactive groups. While formaldehyde fixation impairs detection of the antigen, ethylene glycol-bis[succinic acid n-hydroxysuccinimide ester] reveals the antigen in sections of normal and regenerating limbs in a distribution that is consistent with the one obtained from immunoblots. We suggest that the 22/18 monoclonal antibody detects a change in protein conformation, probably related to changes in the physiological state of the cell, that occurs transiently during regeneration and possibly during development. 相似文献
7.
Eszter Doma 《FEBS letters》2010,584(5):1033-1040
The activation of cysteine-aspartic proteases or caspases and the dynamic arrangement of cytoskeletal components are crucial during apoptosis. Here we describe the fate of Fas downstream of the FasL-induced internalization step, including formation of caspase-dependent SDS-stable Fas complexes, which is mediated by cytoskeleton integrity. We show, in particular, that following FasL treatment, the Fas lower aggregate complex can be co-immunoprecipitated with tubulin and an active form of caspase-8 and that this interaction contributes to the propagation of FasL-induced cell death. The importance of cytoskeletal components during FasL-induced apoptosis is highlighted by our detection of a pool of microtubule-associated Fas complexes. 相似文献
8.