首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Summary To understand the generation and maintenance of Na and K gradients in cultured vascular endothelial cells, net Na and K movements were studied. Ouabain-sensitive (OS) net Na gain and K loss were estimated as the difference between the cation content in the presence of ouabain and that in the control. Ouabain-and furosemide-resistant (OFR) fluxes were determined in the presence of the two inhibitors. When the normal medium bicarbonate and phosphate buffers were replaced by N-2-hydroxyethylpiperazine-N'-2-ethane sulfonic acid both the OS ans OFR fluxes decreased more than 50%. Ouabain-sensitive and ouabain-and furosemide-resistant fluxes decreased with increasing cellular age (passage number) an effect not observed when the cation movements were studied in the absence of bicarbonate and phosphate. These results suggest that cultured vascular endothelial cells possess bicarbonate-and phosphate-dependent Na and K pathways which account for a significant portion of their passive movements. Furthermore, the behavior of cation permeabilities with passage number suggests that these modulations may be related to the cellular aging process.  相似文献   

2.
In order to elucidate changes in cell transport behavior of cultured human skin fibroblasts in response to acute serum depletion, we performed uptake and washout of 22Na+ and 86Rb+ as well as measurements of the intracellular Na+ and K+ levels in the presence and absence of ouabain. Pronounced and lasting increase in cellular Na+ and decrease in K+ were observed after removal of fetal bovine serum (FBS) from the medium. The sum of the Na+ and K+ contents (nEq/10(5) cells) was lower in FBS-free medium (mean +/- SD; 17.3 +/- 2.2) than in FBS-containing medium (26.2 +/- 3.8; P less than .02). Simultaneously, a decrease in cellular water volume was detected in the FBS-free medium. The cation uptake and washout data suggest that FBS removal primarily renders the cells more permeable to Na+ and K+ with a secondary stimulation of the ouabain-sensitive Na+ extrusion mechanism. FBS at a concentration of 0.2% prevented approximately 50% of the maximal increase in the 86Rb+ washout rate constant associated with FBS depletion. Ouabain (2 microM) produced an increase in the 86Rb+ washout rate constant. This effect was substantially larger in cells subjected to medium without FBS (from 0.0303 to 0.2500 min-1) than in fibroblasts incubated in medium with FBS (from 0.0107 to 0.0487 min-1). The cellular K+ content was drastically reduced by ouabain to a level not different in medium with or without FBS (33.9 +/- 4.5 to 1.75 +/- 0.38 and 16.7 +/- 1.4 to 1.4 +/- 0.13 nEq/10(5) cells, respectively). The 22Na+ washout data exhibited a three-exponential pattern. Analytical solutions of the washout data by means of two models (serial and parallel) with three compartments showed that FBS depletion resulted in increase of the size of all three compartments. It is concluded that in cultured human skin fibroblasts, FBS is essential to the maintenance of a normal Na+ and K+ homeostasis. The removal of FBS results in dramatic permutation of this homeostasis that develops within minutes and lasts for hours.  相似文献   

3.
Several lines of evidence suggest that cisplatin-induced cell death is not always the result of apoptosis. A distinctive feature between apoptosis and necrosis is the alteration in cell volume regulation and ion homeostasis. Here we analyzed the changes in intracellular element content during cell death induced by exposure to therapeutic concentrations of cisplatin in the PC12 cell line. To quantitate Na, Cl and K content, electron probe X-ray microanalysis (EPXMA) was performed in whole freeze-dried cells. We also traced the alterations in morphological features with fluorescence and transmission electron microscopy. EPXMA demonstrated progressive derangement of the absolute intracellular Na, Cl and K contents. Cisplatin-treated cells showed two microanalytical patterns: 1) cells with alterations in elemental content typical of apoptosis, i.e., an increase in intracellular Na and a decrease in intracellular Cl and K, and 2) cells characterized by an increase in Na content and a decrease in K content, with no changes in Cl content. This intracellular profile for Na, Cl, and K was not typical of necrosis or apoptosis. Morphological analysis revealed two cellular phenotypes: 1) cells characterized by a phenotype typical of apoptosis, and 2) cells characterized by a hybrid phenotype combining variable features of apoptosis and necrosis. Taken together, our findings suggest that therapeutic concentrations of cisplatin may cause a hybrid type of cell death characterized by concurrent apoptosis and necrosis in the same individual PC12 cell.  相似文献   

4.
The sodium, potassium, and magnesium ion contents of Serratia marcescens and those of its salt-tolerant relative, S. marinoruba, were determined by atomic-absorption spectrometry. The intracellular K(+) and Mg(2+) contents of both microorganisms were found to be dependent on the ionic strength of the growth or suspending medium. The Mg(2+) content of S. marinoruba was generally greater than that of S. marcescens. The Na(+) content of the cells was normally low and did not increase as the cells aged or when the cells were grown in media of high ionic strength. The transport of K(+) by resting cells suspended in hypertonic solution was studied by chemical and light-scattering techniques and was found to be more rapid in S. marcescens than in S. marinorubra. The slower rate of K(+) transport in S. marinorubra is probably related to the lower glycogen reserves found in resting cells of this microorganism. K(+) transport was found to have a pH optimum of 5.5 to 6.1 for S. marcescens, and the K(m) for K(+) was approximately 1.6 mm. Na(+) and Mg(2+) were not taken up by the cells, although the presence of Mg(2+) tended to decrease rates of K(+) uptake. Tris-(hydroxymethyl)aminomethane, routinely used for resuspending the cells, was apparently taken up by the cells at pH >7.  相似文献   

5.
Energy-dependent volume regulation in primary cultured cerebral astrocytes   总被引:2,自引:0,他引:2  
Cell volume regulation and energy metabolism were studied in primary cultured cerebral astrocytes during exposure to media of altered osmolarity. Cells suspended in medium containing 1/2 the normal concentration of NaCl (hypoosmotic) swell immediately to a volume 40-50% larger than cells suspended in isoosmotic medium. The cell volume in hypoosmotic medium then decreases over 30 min to a volume approximately 25% larger than cells in isoosmotic medium. In hyperosmotic medium (containing twice the normal concentration of NaCl), astrocytes shrink by 29%. Little volume change occurs following this initial shrinkage. Cells resuspended in isoosmotic medium after a 30 min incubation in hypoosmotic medium shrink immediately to a volume 10% less than the volume of cells incubated continuously in isoosmotic medium. Thus, the regulatory volume decrease (RVD) in hypoosmotic medium involves a net reduction of intracellular osmoles. The RVD is partially blocked by inhibitors of mitochondrial electron transport but is unaffected by an inhibitor of glycolysis or by an uncoupler of oxidative phosphorylation. Inhibition of RVD by these metabolic agents is correlated with decreased cellular ATP levels. Ouabain, added immediately after hypoosmotic induced swelling, completely inhibits RVD, but does not alter cell volume if added after RVD has taken place. Ouabain also inhibits cell respiration 27% more in hypoosmotic medium than in isoosmotic medium indicating that the (Na,K)-ATPase-coupled ion pump is more active in the hypoosmotic medium. These data suggest that the cell volume response of astrocytes in hypoosmotic medium involves the net movement of osmoles by a mechanism dependent on cellular energy and tightly coupled to the (Na,K)-ATPase ion pump. This process may be important in the energy-dependent osmoregulation in the brain, a critical role attributed to the astrocyte in vivo.  相似文献   

6.
Isolated small intestinal epithelial cells were prepared by using either (a) hyperosmolar, low sodium, high potassium containing (intracellular-like) solutions, or (b) isoosmolar, high sodium, low potassium containing (extracellular-like) solutions. Both (a) and (b) cells show high viability as estimated by Trypan blue exclusion, oxygen consumption, cellular ATP content, lactate-dehydrogenase liberation, intracellular ion concentrations and significant Na+-dependent alanine and uridine uptakes. Although (a) and (b) cells show in the cold similar ion concentration, after reincubation at 37° C for 30 min (a) cells show intracellular ion concentrations of 31 mM Na, 129 mM K and 88 mM Cl, whilst (b) cells have 71 mM Na, 93 mM K and 102 mM Cl. Cells prepared with (a) concentrate much more alanine and uridine than cells prepared with (b), probably because the latter have a lower Na+ gradient across the plasma membrane. Cells prepared with intracellular-like solutions would be an ideal system to study Na+-dependent transport mechanisms and the regulatory systems of intracellular ion concentrations.  相似文献   

7.
Ouabain-sensitive uptake of 86Rb+ (an analogue of K+) was enhanced in L-cells that had been treated with 25-hydroxycholesterol or 7-ketocholesterol in order to deplete their sterol concentration. Ouabain-insensitive Rb+ efflux also increased in the sterol-depleted cells and the intracellular concentration of K+ diminished while the concentration of Na+ increased. All of these effects of 25-hydroxycholesterol were counteracted by the addition of mevalonate to the culture medium. Despite the evidence for increased active Rb+ transport in the 25-hydroxycholesterol-treated cells, the level of sodium and potassium ion-activated adenosine triphosphatase ((Na+ + K+)-activated ATPase) activity measured in homogenates and plasma membrane preparations from the treated cells was not significantly different from the control values. Rb+ uptake was more sensitive to ouabain inhibition in sterol-depleted cells than in control cells, although ATPase activity in plasma membrane fractions isolated from treated cells was not more sensitive to ouabain inhibition than was that from control cells. It is possible that the ability of the oxygenated sterols to inhibit DNA synthesis and cell division (Kandutsch, A. A., and Chen, H. W. (1977) J. Biol. Chem. 252, 409-415) is related to their effects upon cellular ion transport.  相似文献   

8.
Abstract: Vanadate has been known to induce a transient increase in high K+ induced contraction, and also gradually relax the high K+ contraction itself in guinea pig taenia coli. The relationship between the rate of relaxation and ion content of Na+, K+, and V ion at the cellular level was investigated when vanadate was applied to contracted muscle. Tissue Na+ and V ion content increased linearly, depending on the time after vanadate treatment, reaching maximum levels of approximately 50 mM x kg(-1) and 0.25 mM x kg(-1) wet weight, respectively. There was a positive correlation between the V ion and Na+ contents, while there was a negative correlation between both ions and the relaxed rate of the high K+ induced contraction. The uptake of V ion was affected by the external K+ concentration, and the maximum rate of V ion uptake decreased to 40% in the presence of 90 mM external K+. These results suggest that a small amount of V ion was enough to inhibit the Na+ pump activity and muscle contraction in the high K+ solution.  相似文献   

9.
Rubidium and lithium influxes as well as intracellular potassium and sodium contents were investigated in L cells during the culture growth. In sparse culture over the cell densities 0.5-3 X 10(4) cells/cm2 ouabain-sensitive rubidium influx is small and ouabain-resistant lithium influx in high. With the increase in culture density up to 4-5 X 10(4) cells/cm2 the active rubidium influx, mediated by ouabain-sensitive component, is enhanced, and ion "leakage" tested by lithium influx is diminished. Simultaneously with the exponential growth of culture the intracellular potassium content is increased and the intracellular sodium content is decreased resulting in the higher K/Na ratio in cell. During the further transition to dense culture and in stationary state (10-17 X 10(4) cells/cm2) the sodium content and lithium influx do not change significantly, but the potassium content is decreased. The decrease in intracellular potassium is correlated with that in the portion of cells in S-phase from 27-30 to 12%. Thus, in transformed cells the density-dependent alterations in membrane cation transport are observed.  相似文献   

10.
cAMP-induced ion transport in normal and cystic fibrosis (CF) fibroblasts was investigated by X-ray microanalysis. Stimulation with cAMP causes an increase in cellular Na content and a decrease in cellular Cl and K content. No significant difference in response between CF and normal cells was noted. In this respect, fibroblasts differ from epithelial cells, where cAMP-induced Cl- efflux blocked in CF patients. Isoproterenol produced similar changes in Na and K content as cAMP, but did not effect Cl content.  相似文献   

11.
Alzheimer's disease (AD) is associated with impaired glutamate clearance and depressed Na(+)/K(+) ATPase levels in AD brain that might lead to a cellular ion imbalance. To test this hypothesis, [Na(+)] and [K(+)] were analyzed in postmortem brain samples of 12 normal and 16 AD individuals, and in cerebrospinal fluid (CSF) from AD patients and matched controls. Statistically significant increases in [Na(+)] in frontal (25%) and parietal cortex (20%) and in cerebellar [K(+)] (15%) were observed in AD samples compared to controls. CSF from AD patients and matched controls exhibited no differences, suggesting that tissue ion imbalances reflected changes in the intracellular compartment. Differences in cation concentrations between normal and AD brain samples were modeled by a 2-fold increase in intracellular [Na(+)] and an 8-15% increase in intracellular [K(+)]. Since amyloid beta peptide (Aβ) is an important contributor to AD brain pathology, we assessed how Aβ affects ion homeostasis in primary murine astrocytes, the most abundant cells in brain tissue. We demonstrate that treatment of astrocytes with the Aβ 25-35 peptide increases intracellular levels of Na(+) (~2-3-fold) and K(+) (~1.5-fold), which were associated with reduced levels of Na(+)/K(+) ATPase and the Na(+)-dependent glutamate transporters, GLAST and GLT-1. Similar increases in astrocytic Na(+) and K(+) levels were also caused by Aβ 1-40, but not by Aβ 1-42 treatment. Our study suggests a previously unrecognized impairment in AD brain cell ion homeostasis that might be triggered by Aβ and could significantly affect electrophysiological activity of brain cells, contributing to the pathophysiology of AD.  相似文献   

12.
In rat small intestine, the active transport of organic solutes results in significant depolarization of the membrane potential measured in an epithelial cell with respect to a grounded mucosal solution and in an increase in the transepithelial potential difference. According to the analysis with an equivalent circuit model for the epithelium, the changes in emf's of mucosal and serosal membranes induced by active solute transport were calculated using the measured conductive parameters. The result indicates that the mucosal cell membrane depolarizes while the serosal cell membrane remarkably hyperpolarizes on the active solute transport. Corresponding results are derived from the calculations of emf's in a variety of intestines, using the data that have hitherto been reported. The hyperpolarization of serosal membrane induced by the active solute transport might be ascribed to activation of the serosal electrogenic sodium pump. In an attempt to determine the causative factors in mucosal membrane depolarization during active solute transport, cell water contents and ion concentrations were measured. The cell water content remarkably increased and, at the same time, intracellular monovalent ion concentrations significantly decreased with glucose transport. Net gain of glucose within the cell was estimated from the restraint of osmotic balance between intracellular and extracellular fluids. In contrast to the apparent decreases in intracellular Na+ and K+ concentrations, significant gains of Na+ and K+ occurred with glucose transport. The quantitative relationships among net gains of Na+, K+ and glucose during active glucose transport suggest that the coupling ratio between glucose and Na+ entry by the carrier mechanism on the mucosal membrane is approximately 1:1 and the coupling ratio between Na+-efflux and K+-influx of the serosal electrogenic sodium pump is approximately 4:3 in rat small intestine. In addition to the electrogenic ternary complex inflow across the mucosal cell membrane, the decreases in intracellular monovalent ion concentrations, the temporary formation of an osmotic pressure gradient across the cell membrane and the streaming potential induced by water inflow through negatively charged pores of the cell membrane in the course of an active solute transport in intestinal epithelial cells are apparently all possible causes of mucosal membrane depolarization.  相似文献   

13.
The cells of cat right ventricular papillary muscles were depleted of K and caused to accumulate Na and water by preincubation at 2–3°C. The time courses of changes in cellular ion content and volume and of the resting membrane potential (Vm) were then followed after abrupt rewarming to 27–28°C. At physiological external K concentration ([K]o = 5.32 mM) recovery of cellular ion and water contents was complete within 30 minutes, the maximal observable rates of K uptake and Na extrusion (Δmmol cell ion/(kg dry weight) (min.)) being 3.4 and 3.6, respectively. The recovery rate was markedly slowed at [K]o = 1.0 mM. Rewarming caused Vm measured in cells at the muscle surface to recover within from <1 to 9 minutes, but only slight restoration of cellular ion contents (measured in whole muscles) had occurred after 10 minutes. Studies of recovery in NaCl-free sucrose Ringer''s solution made it possible to separate the ouabain-insensitive outward diffusion of Na as a salt from a simultaneous ouabain-sensitive Na extrusion which is associated with a net cellular K uptake. A hypothesis consistent with these observations is that rewarming may activate a ouabain-sensitive "electrogenic" mechanism, most probably the net active transport of Na out of the cell, from which net K uptake may then follow passively.  相似文献   

14.
The intracellular K+/Na+ ratio of various mammalian cell types are known to differ remarkably. Particularly noteworthy is the fact that erythrocytes of different mammalian species contain entirely different potassium and sodium concentrations. The human erythrocyte is an example of the supposedly "normal" high potassium cell, while the dog erythrocyte contains ten times more sodium than potassium ions (Table I). Furthermore, this difference is sustained despite the plasma sodium and potassium concentrations being almost identical in both species (high Na+ and low K+). In spite of these inorganic ion differences, both human and dog erythrocytes contain 33% dry material (mostly Hb) and 67% water. Conventional cell theory would couple cellular volume regulation with Na+ and K+ dependent ATPase activity which is believed to control intracellular Na+/K+ concentrations. Since the high Na+ and low K+ contents of dog erythrocytes are believed to be due to the lack of the postulated Na/K-ATPase enzyme, they must presumably have an alternative mechanism of volume regulation, otherwise current ideas of membrane ATPase activity coupled volume regulation need serious reconsideration. The object of our investigation was to explore the relationship between ATPase activity, ATP levels and the Na+/K+ concentrations in human and dog erythrocytes. Our results indicate that the intracellular ATP level in erythrocytes correspond with their K+, Na+ content. They are discussed in relation to conventional membrane transport theory and also to Ling's "association-induction hypothesis", the latter proving to be a more useful basis on which to interpret results.  相似文献   

15.
We compared intracellular K+ and Na+ ion concentrations during cell growth and differentiation of a mouse myeloid leukemia M1 cell line. Cells undergoing mitosis had higher K+ concentrations than quiescent cells. Treatment with a K+ channel blocker and furosemide enhanced cell growth and produced a slight increase in the intracellular K+ concentration. Treatment with reagents that reduced the intracellular K+ concentration stopped cell growth. Induction of differentiation in this cell line produced a decrease in the K+ concentration, which always was accompanied by an increase in the Na+ concentration. Treatment with ouabain, which decreased the intracellular K+ concentration, did not, however, induce differentiation in the M1 cell line. The data suggest that cell growth and differentiation in the M1 cells are accompanied by changes in the intracellular K+ and Na+ concentrations but that the changes in the contents of these monovalent cations do not necessarily induce differentiation in this cell line.  相似文献   

16.
The effect of high concentrations of glucose on Na, K-ATPase activity and the polyol pathway was studied using cultured bovine aortic endothelial cells. Na, K-ATPase activity was expressed as ouabain-sensitive K+ uptake. A significant decrease in Na, K-ATPase activity with an intracellular accumulation of sorbitol was found in confluent endothelial cells incubated with 400 mg/dl glucose for 96 h. However, there was no significant change in the Na, K-ATPase activity or sorbitol content of the cells incubated with 100 mg/dl glucose plus 300 mg/dl mannitol. The decrease in Na, K-ATPase induced by the high glucose concentration was restored by the simultaneous addition of 10(-4) M ponalrestat (ICI 128,436; Statil), an aldose reductase inhibitor. The addition of this agent also significantly reduced the increase in sorbitol induced by high glucose levels. These results suggest that the decrease in Na, K-ATPase activity induced in cultured aortic endothelial cells by high concentrations of glucose may be caused in part by the accumulation of sorbitol.  相似文献   

17.
The objective of this study on frog skin was to examine correlations between transepidermal active Na-transport and intracellular [Na]c, [K]c, [Cl]c homeostasis. Isolated, whole skins, and "split skins" were used in measurements of short-circuit current (SCC) and open skin potential (PD). Water and ion contents were estimated on split skins. Absolute [Na]c and [K]c varied over the range of 18 to 46, and 113 to 80 mM, respectively (Figure 7), but a complementary relationship existed between Na and K, such that [Na]c + [K]c remained approximately equal to 129 mM. Average values for [Na]c and [K]c were approximately equal to 31 and approximately equal to 96 mM, respectively. [Cl]c remained constant at approximately equal to 38 mM. This complementary relationship does not seem to be an artifact, caused by collagenase, used in the preparation of split skins. Whole skins and split skins in Ringer's solution, when treated with fluoroacetate (FAc), ouabain (Ou), or vanadate (Va) over wide ranges of concentrations, showed that FAc greatly depressed the SCC and the PD, without changing [Na]c, [K]c, [Cl]c. FAc acted only from the corium side of the skin. The decreasing SCC remained a Na-current, as in control skins. By comparison, such a separation of cellular functions could not be established with Ou, or Va. These inhibitors either affected SCC, PD, and cellular ion concentration, or they had no effect on any of these parameters. The complementary relationship between [Na]c and [K]c, with [Cl]c remaining again at approximately equal to 38 mM, was also found in tissues exposed to inhibitors. These results indicate that transcellular active Na transport and electrolyte homeostasis are not always rigidly coupled, suggesting that these processes may not be uniformly distributed within the epithelial cells, or among the interconnected cell layers of the frog skin epidermis.  相似文献   

18.
Red cells from newborn lambs were separated into different age populations by centrifugation, and cells with fetal hemoglobin (Hb) were distinguished from those with adult Hb by an acid elution technique. Changes were followed during development in rates of K+ transport (active and passive), numbers of Na+/K+ pump sites per cell, cell volumes, and numbers of Lp and L1 antigen sites per cell. These changes were correlated with the percentage of cells with adult hemoglobin. (The Lp and L1 antigens are associated with K+ transport in that specific alloantibody against Lp, anti-Lp, stimulates active transport, and anti-L1 inhibits passive transport.) Active K+ transport decreased during development because of a decline in number of Na+/K+ pumps (from measurements of ouabain binding) and because of an alteration in the affinity of the pumps for intracellular K+ (from kinetic studies in which the intracellular K+ concentration was varied). Cells with fetal Hb had fewer Lp sites and were larger than cells with adult Hb. As transport properties changed, the number of Lp sites increased and continued to increase after all the cells had adult Hb Cells with fetal Hb had as many L1 sites as lamb cells with adult Hb, but the number of L1 sites was less than those found previously for adult sheep. A population of small cells with intermediate K+ concentration and intermediate numbers of Lp sites appeared soon after birth. The various points of evidence suggested that the developmental process leading to cells with adult transport properties was a gradual one and did not coincide precisely with the switch from fetal to adult Hb.  相似文献   

19.
Previous studies with mammalian cultured cells have shown that volume regulation in hypotonic medium requires active Na transport. In the present study, determinations of intracellular Na and K content were made in cultured mouse lymphoblasts during the process of swelling and subsequent shrinking (volume regulation) in hypotonic medium. Na and K content were measured in cells in which the shrinking phase was inhibited by the cardiac glycoside, ouabain. In osmotically-shocked cells, an initial permeability increase to K, and not Na, was observed, which allowed K to diffuse out rapidly, down its gradient. Na, meanwhile, rapidly flowed inward with water entry during the swelling process, and was later lost with the same kinetics as the cell shrinkage. This loss of Na was prevented in the presence of ouabain. The results imply that volume regulation is achieved by pumping Na gained during swelling out of the cells, while any K taken up by the pump is rapidly lost through a more permeable membrane. The loss of osmotically active Na, presumably with accompanying anions, allows water to passively diffuse down its osmotic gradient, reducing cell volume subsequent to the initial passive swelling, during which K was rapidly lost.  相似文献   

20.
Sodium-dependent nucleoside transport in mouse leukemia L1210 cells   总被引:1,自引:0,他引:1  
Nucleoside permeation in L1210/AM cells is mediated by (a) equilibrative (facilitated diffusion) transporters of two types and by (b) a concentrative Na(+)-dependent transport system of low sensitivity to nitrobenzylthioinosine and dipyridamole, classical inhibitors of equilibrative nucleoside transport. In medium containing 10 microM dipyridamole and 20 microM adenosine, the equilibrative nucleoside transport systems of L1210/AM cells were substantially inhibited and the unimpaired activity of the Na(+)-dependent nucleoside transport system resulted in the cellular accumulation of free adenosine to 86 microM in 5 min, a concentration three times greater than the steady-state levels of adenosine achieved without dipyridamole. Uphill adenosine transport was not observed when extracellular Na+ was replaced by Li+, K+, Cs+, or N-methyl-D-glucammonium ions, or after treatment of the cells with nystatin, a Na+ ionophore. These findings show that concentrative nucleoside transport activity in L1210/AM cells required an inward transmembrane Na+ gradient. Treatment of cells in sodium medium with 2 mM furosemide in the absence or presence of 2 mM ouabain inhibited Na(+)-dependent adenosine transport by 50 and 75%, respectively. However, because treatment of cells with either agent in Na(+)-free medium decreased adenosine transport by only 25%, part of this inhibition may be secondary to the effects of furosemide and ouabain on the ionic content of the cells. Substitution of extracellular Cl- by SO4(-2) or SCN- had no effect on the concentrative influx of adenosine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号