共查询到20条相似文献,搜索用时 11 毫秒
1.
Chirom Aarti Ameer Khusro Paul Agastian Noura M. Darwish Dunia A. Al Farraj 《Saudi Journal of Biological Sciences》2020,27(12):3235-3248
Soil is an integral part of ecosystem which is niche for varieties of microflora. The present study was investigated to isolate varied strains of bacteria from soil samples of three different geographical regions of Tamil Nadu (India) and evaluate their hydrolytic enzymes (amylase, cellulase, and inulinase) producing potentialities. Among 72 bacterial cultures isolated from Ambattur Industrial Estate, Neyveli Lignite Corporation, and Arignar Anna Zoological Park regions, 41.66, 38.88, and 36.11% of isolates were observed amylase, cellulase, and inulinase producers, respectively. On the other hand, 20.83% of total bacteria isolated from all three regions exhibited concurrent production of amylase, cellulase, and inulinase. Potent isolates depicting maximum enzyme activities were identified as Bacillus anthracis strain ALA1, Bacillus cereus strain ALA3, Glutamicibacter arilaitensis strain ALA4, and Bacillus thuringiensis strain ALA5 based on molecular characterization tools. Further, the thermodynamics parameters, open reading frames (ORFs) regions, and guanine-cytosine (GC) content were determined by distinct bioinformatics tools using 16S rRNA sequences of strains. Minimum free energy values for strain ALA1, strain ALA3, strain ALA4, and strain ALA5 were calculated as −480.73, −478.76, −496.63, and −479.03 kcal/mol, respectively. Mountain plot and entropy predicted the hierarchical representation of RNA secondary structure. The GC content of sequence for strain ALA1, strain ALA3, strain ALA4, and strain ALA5 was calculated as 53.06, 52.94, 56.78, and 53.06%, respectively. Nine ORFs were obtained for strain ALA1, strain ALA3, and strain ALA5 while 10 ORFs were observed for strain ALA4. Additionally, bootstrap tree demonstrated close resemblance of strains with existing bacteria of similar genus. Findings showed higher variability of bacterial diversity as hydrolytic enzymes producers in the investigated geographical regions. 相似文献
2.
Maria Bučková Andrea Puškarová Katarína Chovanová Lucia Kraková Peter Ferianc Domenico Pangallo 《World journal of microbiology & biotechnology》2013,29(6):1085-1098
The use of indigenous bacterial strains is a valuable bioremediation strategy for cleaning the environment from hydrocarbon pollutants. The isolation and selection of hydrocarbon-degrading bacteria is therefore crucial for obtaining the most promising strains for site decontamination. Two different media, a minimal medium supplemented with a mixture of polycyclic aromatic hydrocarbons and a MS medium supplemented with triphenyltetrazolium chloride, were used for the isolation of bacterial strains from two hydrocarbon contaminated soils and from their enrichment phases. The hydrocarbon degradation abilities of these bacterial isolates were easily and rapidly assessed using the 2,6-dichlorophenol indophenol assay. The diversity of the bacterial communities isolated from these two soil samples and from their enrichment phases was evaluated by the combination of a bacterial clustering method, fluorescence ITS-PCR, and bacterial identification by 16S rRNA sequencing. Different PCR-based assays were performed in order to detect the genes responsible for hydrocarbon degradation. The best hydrocarbon-degrading bacteria, including Arthrobacter sp., Enterobacter sp., Sphingomonas sp., Pseudomonas koreensis, Pseudomonas putida and Pseudomonas plecoglossicida, were isolated directly from the soil samples on minimal medium. The nahAc gene was detected only in 13 Gram-negative isolates and the sequences of nahAc-like genes were obtained from Enterobacter, Stenotrophomonas, Pseudomonas brenneri, Pseudomonas entomophila and P. koreensis strains. The combination of isolation on minimal medium with the 2,6-dichlorophenol indophenol assay was effective in selecting different hydrocarbon-degrading strains from 353 isolates. 相似文献
3.
Abundance and diversity of nitrogen-fixing bacteria in rhizosphere and bulk paddy soil under different duration of organic management 总被引:1,自引:0,他引:1
Denaturing gradient gel electrophoresis (DGGE) and quantitative real-time PCR (qPCR) approaches were used to assess respectively
the molecular diversity and quantity of the nifH gene sequences in rhizosphere and bulk paddy soil under conventional management and different duration of organic management
(2, 3, 5, 9 years). The phylogenetic distribution of clones based on nifH gene sequence showed that taxonomic groups were consisted of Alphaproteobacteria (27.6%), Betaproteobacteria (24.1%) and Gammaproteobacteria (48.3%). Members of the order Rhizobiales and Pseudomonadales were prevalent among the dominant diazotrophs. When the quantity of the nifH gene sequences was determined by qPCR, 2.27 × 105 to 1.14 × 106 copies/g of soil were detected. Except for 2 years organically managed soil, nifH gene copy numbers in organic soil, both rhizosphere and bulk, were significantly higher than in CM soil. Moreover, nifH gene copy numbers in the organic rhizosphere soil (3, 5, 9 years) were significantly higher than in bulk soil. The abundance
and diversity of nitrogen-fixing bacteria tended to increase with duration of organic management but the highest number of
nifH gene copies was observed in the rhizosphere and bulk soil of 5 years organic management. In addition, analysis of variance
and canonical correspondence analysis (CCA) showed that C/N, C and N were important factors influencing the abundance and
community structure of nitrogen-fixing bacterial. 相似文献
5.
High diversity in DNA of soil bacteria 总被引:65,自引:0,他引:65
Soil bacterium DNA was isolated by minor modifications of previously described methods. After purification on hydroxyapatite and precipitation with cetylpyridinium bromide, the DNA was sheared in a French press to give fragments with an average molecular mass of 420,000 daltons. After repeated hydroxyapatite purification and precipitation with cetylpyridinium bromide, high-pressure liquid chromatography analysis showed the presence of 2.1% RNA or less, whereas 5-methylcytosine made up 2.9% of the total deoxycytidine content. No other unusual bases could be detected. The hyperchromicity was 31 to 36%, and the melting curve in 1 X SSC (0.15 M NaCl plus 0.015 M sodium citrate) corresponded to 58.3 mol% G+C. High-pressure liquid chromatography analysis of two DNA samples gave 58.6 and 60.8 mol% G+C. The heterogeneity of the DNA was determined by reassociation of single-stranded DNA, measured spectrophotometrically. Owing to the high complexity of the DNA, the reassociation had to be carried out in 6 X SSC with 30% dimethyl sulfoxide added. Cuvettes with a 1-mm light path were used, and the A275 was read. DNA concentrations as high as 950 micrograms ml-1 could be used, and the reassociation rate of Escherichia coli DNA was increased about 4.3-fold compared with standard conditions. C0t1/2 values were determined relative to that for E. coli DNA, whereas calf thymus DNA was reassociated for comparison. Our results show that the major part of DNA isolated from the bacterial fraction of soil is very heterogeneous, with a C0t1/2 about 4,600, corresponding to about 4,000 completely different genomes of standard soil bacteria.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
6.
Genetic diversity of carbofuran-degrading soil bacteria 总被引:4,自引:0,他引:4
The genetic diversity of 128 carbofuran-degrading bacteria was determined by ARDRA (amplified ribosomal DNA restriction analysis) of 16S rDNA and restriction fragment length polymorphism analysis of the 16S-23S rDNA spacer region (IGS) using five endonucleases. The isolates were distributed in 26 distinct ARDRA groups and 45 IGS types revealing a high level of microbial diversity confirmed by ARDRA clustering and sequencing of 16S rDNA. The occurrence of a methylcarbamate-degrading gene (mcd) was monitored by polymerase chain reaction amplification using specific primers. The mcd gene was detected only in 58 bacteria and there was no clear relationship between the presence of this gene and the phylogenetic position of the strain. 相似文献
7.
Soil bacterium DNA was isolated by minor modifications of previously described methods. After purification on hydroxyapatite and precipitation with cetylpyridinium bromide, the DNA was sheared in a French press to give fragments with an average molecular mass of 420,000 daltons. After repeated hydroxyapatite purification and precipitation with cetylpyridinium bromide, high-pressure liquid chromatography analysis showed the presence of 2.1% RNA or less, whereas 5-methylcytosine made up 2.9% of the total deoxycytidine content. No other unusual bases could be detected. The hyperchromicity was 31 to 36%, and the melting curve in 1 X SSC (0.15 M NaCl plus 0.015 M sodium citrate) corresponded to 58.3 mol% G+C. High-pressure liquid chromatography analysis of two DNA samples gave 58.6 and 60.8 mol% G+C. The heterogeneity of the DNA was determined by reassociation of single-stranded DNA, measured spectrophotometrically. Owing to the high complexity of the DNA, the reassociation had to be carried out in 6 X SSC with 30% dimethyl sulfoxide added. Cuvettes with a 1-mm light path were used, and the A275 was read. DNA concentrations as high as 950 micrograms ml-1 could be used, and the reassociation rate of Escherichia coli DNA was increased about 4.3-fold compared with standard conditions. C0t1/2 values were determined relative to that for E. coli DNA, whereas calf thymus DNA was reassociated for comparison. Our results show that the major part of DNA isolated from the bacterial fraction of soil is very heterogeneous, with a C0t1/2 about 4,600, corresponding to about 4,000 completely different genomes of standard soil bacteria.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
8.
9.
10.
Ingrid M. Lubbers Matty P. Berg Gerlinde B. De Deyn Wim H. van der Putten Jan Willem van Groenigen 《Global Change Biology》2020,26(3):1886-1898
Soil faunal activity can be a major control of greenhouse gas (GHG) emissions from soil. Effects of single faunal species, genera or families have been investigated, but it is unknown how soil fauna diversity may influence emissions of both carbon dioxide (CO2, end product of decomposition of organic matter) and nitrous oxide (N2O, an intermediate product of N transformation processes, in particular denitrification). Here, we studied how CO2 and N2O emissions are affected by species and species mixtures of up to eight species of detritivorous/fungivorous soil fauna from four different taxonomic groups (earthworms, potworms, mites, springtails) using a microcosm set‐up. We found that higher species richness and increased functional dissimilarity of species mixtures led to increased faunal‐induced CO2 emission (up to 10%), but decreased N2O emission (up to 62%). Large ecosystem engineers such as earthworms were key drivers of both CO2 and N2O emissions. Interestingly, increased biodiversity of other soil fauna in the presence of earthworms decreased faunal‐induced N2O emission despite enhanced C cycling. We conclude that higher soil fauna functional diversity enhanced the intensity of belowground processes, leading to more complete litter decomposition and increased CO2 emission, but concurrently also resulting in more complete denitrification and reduced N2O emission. Our results suggest that increased soil fauna species diversity has the potential to mitigate emissions of N2O from soil ecosystems. Given the loss of soil biodiversity in managed soils, our findings call for adoption of management practices that enhance soil biodiversity and stimulate a functionally diverse faunal community to reduce N2O emissions from managed soils. 相似文献
11.
Mônica Teresa Prantera Adam Drozdowicz Selma Gomes Leite Alexandre Soares Rosado 《Biotechnology letters》2002,24(1):85-89
Two bacterial strains, 3A and 5A, isolated from soil, were selected for their ability to degrade gasoline aromatic compounds and to fix N2. Strains 3A and 5A have been ascribed to the genera Agrobacterium and Alcaligenes, respectively. Using gasoline as the sole carbon source these strains were as effective at degrading benzene, toluene and xylene as Pseudomonas putida ATCC12236, a reference biodegrading strain. 相似文献
12.
13.
14.
15.
Nishizawa T Tago K Oshima K Hattori M Ishii S Otsuka S Senoo K 《Journal of bacteriology》2012,194(5):1255
We report the finished and annotated genome sequence of a denitrifying and N(2)O-reducing betaproteobacterium, Azoarcus sp. strain KH32C. The genome is composed of one chromosome and one megaplasmid and contains genes for plant-microbe interactions and the gene clusters for aromatic-compound degradations. 相似文献
16.
The invasive Sorghum halepense harbors endophytic N2-fixing bacteria and alters soil biogeochemistry
Exotic plants invading new habitats frequently initiate broad changes in ecosystem functioning. Sorghum halepense is an invasive grass capable of growing in nitrogen (N)-poor tallgrass prairie soils that creates near monocultures in once phylogenetically diverse-communities. The biogeochemistry of soils invaded by S. halepense was compared to that of un-invaded native prairie soils. Invaded soils contained two to four times greater concentrations of alkaline metals, micronutrients, and essential plant nutrients than native prairie soils. The notable exception was Ca+2, which was always significantly lower in invaded soils. The N-content of S. halepense above-ground biomass was 6.4 mg g?1 (320 mg N plant?1) and suggested a supplemental N source supporting plant growth. Altered soil biogeochemistry in invaded areas coupled with high above-ground biomass in N-poor soils suggested N2-fixing activity associated with S. halepense. Nitrogenase activity of plant tissues indicated that N2-fixation was occurring in, and largely restricted to, S. halepense rhizomes and roots. A culture approach was used to isolate these N2-fixing bacteria from plant tissues, and 16S rRNA gene sequencing was used to identify these bacterial isolates. Nitrogenase activity of bacterial isolates indicated several were capable of N2-fixation. In addition to N2-fixation, other roles involved in promoting plant growth, namely mobilizing phosphorus and iron chelation, are known for closest matching relatives of the bacterial isolates identified in this work. Our results indicate that these plant growth-promoting bacteria may enhance the ability of S. halepense to invade and persist by altering fundamental ecosystem properties via significant changes in soil biogeochemistry. 相似文献
17.
Colonization at sugar beet root surfaces by seedling-inoculated biocontrol strain Pseudomonas fluorescens DR54 and native soil bacteria was followed over a period of 3 weeks using a combination of immunofluorescence (DR54-targeting specific antibody) and fluorescence in situ hybridization (rRNA-targeting Eubacteria EUB338 probe) techniques with confocal laser scanning microscopy. The dual staining protocol allowed cellular activity (ribosomal number) to be recorded in both single cells and microcolonies of strain DR54 during establishment on the root. After 2 days, the population density of strain DR54 reached a constant level at the root basis. From this time, however, high cellular activity was only found in few bacteria located as single cells, whereas all microcolony-forming cells occurring in aggregates were still active. In contrast, a low density of strain DR54 was observed at the root tip, but here many of the bacteria located as single cells were active. The native population of soil bacteria, comprising a diverse assembly of morphologically different forms and size classes, initiated colonization at the root basis only after 2 days of incubation. Hence the dual staining protocol allowed direct microscopic studies of early root colonization by both inoculant and native soil bacteria, including their differentiation into active and non-active cells and into single or microcolony-forming cells. 相似文献
18.
Legumes are an important component of plant diversity that modulate nitrogen (N) cycling in many terrestrial ecosystems. Limited knowledge of legume effects on soil N cycling and its response to global change factors and plant diversity hinders a general understanding of whether and how legumes broadly regulate the response of soil N availability to those factors. In a 17‐year study of perennial grassland species grown under ambient and elevated (+180 ppm) CO2 and ambient and enriched (+4 g N m?2 year?1) N environments, we compared pure legume plots with plots dominated by or including other herbaceous functional groups (and containing one or four species) to assess the effect of legumes on N cycling (net N mineralization rate and inorganic N pools). We also examined the effects of numbers of legume species (from zero to four) in four‐species mixed plots on soil N cycling. We hypothesized that legumes would increase N mineralization rates most in those treatments with the greatest diversity and the greatest relative limitation by and competition for N. Results partially supported these hypotheses. Plots with greater dominance by legumes had greater soil nitrate concentrations and mineralization rates. Higher species richness significantly increased the impact of legumes on soil N metrics, with 349% and 505% higher mineralization rates and nitrate concentrations in four‐species plots containing legumes compared to legume‐free four‐species plots, in contrast to 185% and 129% greater values, respectively, in pure legume than nonlegume monoculture plots. N‐fertilized plots had greater legume effects on soil nitrate, but lower legume effects on net N mineralization. In contrast, neither elevated CO2 nor its interaction with legumes affected net N mineralization. These results indicate that legumes markedly influence the response of soil N cycling to some, but not all, global change drivers. 相似文献
19.
紫云英根际微生物碳源利用多样性研究 总被引:2,自引:0,他引:2
为探究绿肥根际调控效果的原因,采用碳素利用法-BIOLOG生态版,分析紫云英根际微生物种群结构和功能多样性。结果表明:紫云英根际土壤微生物总活性比非根际高,其主要贡献者是以氨基酸、糖类、酯类和醇类四大碳源为生的微生物,而与以磷酸盐、羧酸和胺类为碳源的微生物关系不大。进一步分析发现:紫云英根际产生了以α-酮丁酸、2-羟基安息香酸、4-羟基安息香酸、D-半乳糖醛酸、α-环式糊精、D-木糖、β-甲基-D-葡萄糖、D-甘露醇和L-精氨酸作为碳源的新微生物种群,完全抑制了以γ-羟基丁酸和苯乙基胺为碳源的微生物种群活性;根泌物抑制了以D-苹果酸、衣康酸和肝糖为碳源的微生物活性,而对以D-化纤二糖、N-乙酰基-D-葡萄胺、丙酮酸甲酯、吐温40、吐温80、L-苯基丙氨酸、L-天门酰胺酸和腐胺为碳源的微生物有促进作用,但对以D-氨基葡糖酸、α-D-乳糖和I-赤藻糖醇为碳源的微生物活性无显著影响;另外,即使是以同一类物质为碳源的微生物种群,在紫云英根际的表现也不完全一样,如以D-乳酸γ-内酯和L-丝氨酸为碳源的可快速培养微生物受到抑制,可慢速培养的微生物活性则有提高,而以甘氨酰基-L-谷氨酸为碳源的微生物的表现正好与之相反。 相似文献
20.
Comparison of phenotypic diversity and DNA heterogeneity in a population of soil bacteria 总被引:9,自引:0,他引:9
The phenotypic diversity of about 200 bacterial strains isolated from soil was compared with the genotypic diversity of the same population. The strains were phenotypically characterized by the API 20B test system. The results of these tests were subjected to cluster analysis, which revealed 41 biotypes at 80% similarity. The five dominating biotypes contained 43% of the strains. The phenotypic diversity as determined by the Shannon index, equitability, rarefaction, and cumulative differences was high, but indicated some dominant biotypes. The genetic diversity was measured by reassociation of mixtures of denatured DNA isolated from the bacterial strains (C0t plots). The observed genetic diversity was high. Reassociation of DNA from all bacterial strains together revealed that the population contained heterologous DNA equivalent to 20 totally different bacterial genomes (i.e., genomes that have no homology). This study showed that reassociation of DNA isolated from a collection of bacteria gave a good estimate of the diversity of the collection and that there was good agreement with different phenotypic diversity measures. The Shannon index in particular has features in common with the genetic diversity measure presented here. 相似文献