首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 287 毫秒
1.
The reduction of plastocyanin by plastoquinol-1 was efficiently catalysed by disrupted chloroplasts or etioplasts in the dark. The reaction was inhibited by 2,5-dibromomethylisopropyl-p-benzo-quinone which inhibits photosynthetic electron transport between plastoquinone and cytochrome f. Evidence is presented that the reduction took place via cytochrome f, and that plastoquinone-9 was not involved. Triton X-100 and organic solvents were inhibitory, but partial fractionation was achieved without loss of activity by density gradient centrifugation in the presence of high digitonin concentrations. All active material contained cytochromes b-559LP and b-563 in addition to cytochrome f, but these b-type cytochromes were not directly involved. Other 1-electron acceptors could be used in place of plastocyanin, for instance ferricyanide and Pseudomonas cytochrome c-551. The reaction can be applied to give a sensitive dark assay for active cytochrome f. It is suggested that cytochrome f possesses two sites for interaction with redox reagents: a hydrophilic site with which plastocyanin reacts by electron transfer and a hydrophobic site with which plastoquinol reacts by hydrogen atom transfer.  相似文献   

2.
Chemical modification of plastocyanin was carried out using 4-chloro-3,5-dinitrobenzoic acid, which has the effect of replacing positive charges on amino groups with negatively charged carboxyl groups. Four singly-modified forms were obtained which were separated using anion exchange FPLC. The four forms were modified at the N-terminal valine and at lysines 54, 71 and 77. The rates of reaction with mammalian cytochrome c were increased for all four modified plastocyanins. In contrast, the rates of reaction with cytochrome f were inhibited for the forms modified at residues 1, 54 and 77, whereas no effect was observed for the form modified at residue 71. Modification had no effect on either the midpoint redox potential or the reaction with K3Fe(CN)6. These results are consistent with a model in which charged residues on plastocyanin located at or near the binding site for cytochrome f recognize the positively-charged binding site on cytochrome f. In contrast, charged residues located at points on plastocyanin distant from the cytochrome f binding site recognize the net negative charge on the cytochrome f molecule. Based on these considerations, Glu-68 may be within the interaction sphere of cytochrome f, suggesting that cytochrome f may donate electrons to plastocyanin at either Tyr-83 or His-87.  相似文献   

3.
Plastocyanin can be covalently cross-linked to the monomeric cytochrome f from turnip by incubation in the presence of a water-soluble carbodiimide. The adduct between the two proteins has a molecular weight of approximately 43,000 suggesting a 1:1 stoichiometry between the two proteins of the adduct. This stoichiometry has been verified by spectral characterization of the adduct. The efficiency of the cross-linking reaction is pH dependent with a higher degree of cross-linking being observed at pH 6.5 than at pH 7.0.  相似文献   

4.
Soluble turnip cytochrome f has been purified from the periplasmic fraction of Escherichia coli expressing a truncated petA gene encoding the precursor protein lacking the C-terminal 33 amino-acid residues. The protein is identical [as judged by 1H-NMR spectroscopy, midpoint redox potential (+ 365 mV) and electron transfer reactions with plastocyanin] to cytochrome f purified from turnip leaves. Several residues in the hydrophobic patch surrounding the haem group have been changed by site-directed mutagenesis, and the proteins purified from E. coli. The Y1F and Q7N mutants showed only minor changes in the plastocyanin-binding constant Ka and the second-order rate constant for electron transfer to plastocyanin, whereas the Y160S mutant showed a 30% decrease in the overall rate of electron transfer caused in part by a 60% decrease in binding constant and partially compensated by an increased driving force due to a 27-mV decrease in redox potential. In contrast, the F4Y mutant showed increased rates of electron transfer which may be ascribed to an increased binding constant and a 14-mV decrease in midpoint redox potential. This indicates that subtle changes in the hydrophobic patch can influence rates of electron transfer to plastocyanin by changing the binding constants and altering the midpoint redox potential of the cytochrome haem group.  相似文献   

5.
The transient complex between cytochrome f and plastocyanin from the cyanobacterium Nostoc sp. PCC 7119 has been analysed by X-ray Absorption Spectroscopy in solution, using both proteins in their oxidized and reduced states. Fe K-edge data mainly shows that the atypical metal coordination geometry of cytochrome f, in which the N-terminal amino acid acts as an axial ligand of the heme group, remains unaltered upon binding to its redox partner, plastocyanin. This fact suggests that cytochrome f provides a stable binding site for plastocyanin and minimizes the reorganization energy required in the transient complex formation, which could facilitate the electron transfer between the two redox partners.  相似文献   

6.
The gene for plastocyanin from the cyanobacterium Phormidium laminosum was successfully expressed in Escherichia coli. Expression of the gene for cytochrome f resulted in the production of holocytochrome f in the periplasmic space of E. coli, but the yield was low. Expression in Paracoccus denitrificans yielded no holoprotein. When the region encoding the cytochrome f leader sequence was replaced with more typical bacterial leader sequences (those from the P. laminosum plastocyanin gene and the Paracoccus versutus cytochrome c-550 gene), much higher yields were consistently obtained in both species. Overexpressed proteins were compared to those isolated from P. laminosum and found to be identical in mass, isoelectric point, redox midpoint potential and (for plastocyanin) 1H-NMR spectrum.  相似文献   

7.
A truncated form of cytochrome f from Chlamydomonas reinhardtii (an important eukaryotic model organism for photosynthetic electron transfer studies) has been crystallized (space group P2(1)2(1)2(1); three molecules/asymmetric unit) and its structure determined to 2.0 A resolution by molecular replacement using the coordinates of a truncated turnip cytochrome f as a model. The structure displays the same folding and detailed features as turnip cytochrome f, including (a) an unusual heme Fe ligation by the alpha-amino group of tyrosine 1, (b) a cluster of lysine residues (proposed docking site of plastocyanin), and (c) the presence of a chain of seven water molecules bound to conserved residues and extending between the heme pocket and K58 and K66 at the lysine cluster. For this array of waters, we propose a structural role. Two cytochrome f molecules are related by a noncrystallographic symmetry operator which is a distorted proper 2-fold rotation. This may represent the dimeric relation of the monomers in situ; however, the heme orientation suggested by this model is not consistent with previous EPR measurements on oriented membranes.  相似文献   

8.
The orientation of poplar plastocyanin in the complex with turnip cytochrome f has been determined by rigid-body calculations using restraints from paramagnetic NMR measurements. The results show that poplar plastocyanin interacts with cytochrome f with the hydrophobic patch of plastocyanin close to the heme region on cytochrome f and via electrostatic interactions between the charged patches on both proteins. Plastocyanin is tilted relative to the orientation reported for spinach plastocyanin, resulting in a longer distance between iron and copper (13.9 A). With increasing ionic strength, from 0.01 to 0.11 M, all observed chemical-shift changes decrease uniformly, supporting the idea that electrostatic forces contribute to complex formation. There is no indication for a rearrangement of the transient complex in this ionic strength range, contrary to what had been proposed earlier on the basis of kinetic data. By decreasing the pH from pH 7.7 to pH 5.5, the complex is destabilized. This may be attributed to the protonation of the conserved acidic patches or the copper ligand His87 in poplar plastocyanin, which are shown to have similar pK(a) values. The results are interpreted in a two-step model for complex formation.  相似文献   

9.
Little is known about c-type cytochromes in Gram-positive bacteria in contrast to the wealth of information available on this type of cytochrome in Gram-negative bacteria and in eucaryotes. In the present work, the strictly aerobic bacterium Bacillus subtilis was analyzed for subcellular localization and number of different cytochromes c. In vivo labeling with radioactive 5-aminolevulinic acid, a precursor to heme, showed that the proteins containing covalently bound heme are predominantly found in the membrane fraction. One major membrane-bound cytochrome c of about 15 kDa and with an alpha-band absorption peak in the reduced state at 550 nm was analyzed in more detail. Cytochrome c-550 has the properties of an integral membrane protein. The physiological function of this relatively high redox potential cytochrome is not known. Its structural gene, cccA, was cloned, sequenced, and overexpressed in B. subtilis. The gene maps adjacent to rpoD (sigA) at 223 degrees on the chromosome. The amino acid sequence of cytochrome c-550 as deduced from the DNA sequence consists of 120 residues and contains one heme c binding site (Cys-Ile-Ala-Cys-His) located approximately in the middle of the polypeptide. From the hydropathy distribution and from comparisons to soluble c-type cytochromes of known three-dimensional structure, cytochrome c-550 seemingly consists of two domains; an N-terminal membrane-anchor domain and a C-terminal heme domain. A model for the topography of the cytochrome in the cytoplasmic membrane is suggested in which the N-terminal part spans the membrane in the form of a single segment in an alpha-helical conformation and the C-terminal heme domain is exposed on the extracytoplasmic side of the membrane. Deletion of cccA from the chromosome revealed another membrane-bound cytochrome with absorption maximum at 550 nm in the reduced state. Analysis of cccA deletion mutants demonstrated that the cytochrome c-550 encoded by cccA is not essential for growth of B. subtilis on rich or minimal media.  相似文献   

10.
Plastocyanin and cytochrome c 6 are two soluble metalloproteins that act as alternative electron carriers between the membrane-embedded complexes cytochromes b 6 f and Photosystem I. Despite plastocyanin and cytochrome c 6 differing in the nature of their redox center (one is a copper protein, the other is a heme protein) and folding pattern (one is a β-barrel, the other consists of α-helices), they are exchangeable in green algae and cyanobacteria. In fact, the two proteins share a number of structural similarities that allow them to interact with the same membrane complexes in a similar way. The kinetic and thermodynamic analysis of Photosystem I reduction by plastocyanin and cytochrome c 6 reveals that the same factors govern the reaction mechanism within the same organism, but differ from one another. In cyanobacteria, in particular, the electrostatic and hydrophobic interactions between Photosystem I and its electron donors have been analyzed using the wild-type protein species and site-directed mutants. A number of residues similarly conserved in the two proteins have been shown to be critical for the electron transfer reaction. Cytochrome c 6 does contain two functional areas that are equivalent to those previously described in plastocyanin: one is a hydrophobic patch for electron transfer (site 1), and the other is an electrically charged area for complex formation (site 2). Each cyanobacterial protein contains just one arginyl residue, similarly located between sites 1 and 2, that is essential for the redox interaction with Photosystem I. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Kinetic studies on a cross-linked complex between plastocyanin cytochrome f   总被引:2,自引:0,他引:2  
A cross-linked complex between plastocyanin and cytochrome f was prepared by incubation in the presence of a water soluble carbodiimide and its kinetic properties were studied. The optical spectra, oxidation-reduction potentials and isoelectric pH of plastocyanin and cytochrome f did not change upon the formation of the cross-linked complex. Studies on the ionic strength effect on the electron transfer rate from cross-linked plastocyanin to ferricyanide indicated that the negative charge on the reaction site of plastocyanin was masked upon the cross-linking. It was also suggested that the sign of the net charge near the cytochrome f heme edge changed from positive to negative upon the cross-linking. On the other hand, electrostatic interactions between cross-linked plastocyanin and P700 seemed to be essentially the same as those in the case of native plastocyanin, although the rate of electron transfer from cross-linked plastocyanin to P700 was severely reduced. We also measured the intra-complex electron transfer from cytochrome f to plastocyanin. This suggested that the covalently cross-linked complex is a valid model of the electron transfer encounter complex. Based on these results, the reaction sites of plastocyanin with P700 and cytochrome f were discussed.  相似文献   

12.
The results of a comprehensive Q-band resonance Raman investigation of cytochrome c1 and cytochrome f subunits of bc1 and b6f complexes are presented. Q-band excitation provides a particularly effective probe of the local heme environments of these species. The effects of protein conformation (particularly axial ligation) on heme structure and function were further investigated by comparison of spectra obtained from native subunits to those of a site directed c1 mutant (M183L) and various pH-dependent species of horse heart cytochrome c. In general, all species examined displayed variability in their axial amino acid ligation that suggests a good deal of flexibility in their hemepocket conformations. Surprisingly, the large scale protein rearrangements that accompany axial ligand replacement have little or no effect on macrocycle geometry in these species. This indicates the identity and/or conformation of the peptide linkage between the two cysteines that are covalently linked to the heme periphery may determine heme geometry.  相似文献   

13.
In cyanobacteria, cytochrome c6 and plastocyanin are able to replace each other as redox carriers in the photosynthetic and respiratory electron transport chains with the synthesis of one or another protein being regulated by the copper concentration in the culture medium. However, the presence of a third unidentified electron carrier has been suggested. To address this point, we have constructed two deletion mutants of the cyanobacterium Synechocystis sp. PCC 6803, each variant lacking either the petE or petJ gene, which respectively codes for the copper or heme protein. The photoautotrophic and heterotrophic growth rate of the two mutants in copper-free and copper-supplemented medium as well as their photosystem I reduction kinetics in vivo were compared with those of wild-type cells. The two mutant strains grow at equivalent rates and show similar in vivo photosystem I reduction kinetics as wild-type cells when cultured in media that allow the expression of just one of the two electron donor proteins, but their ability to grow and reduce photosystem I is much lower when neither cytochrome c6 nor plastocyanin is expressed. These findings indicate that the normal functioning of the cyanobacterial photosynthetic and respiratory chains obligatorily depends on the presence of either cytochrome c6 or plastocyanin.  相似文献   

14.
Cytochrome c(6) and cytochrome c-549 are small (89 and 130 amino acids, respectively) monoheme cytochromes that function in photosynthesis. They appear to have descended relatively recently from the same ancestral gene but have diverged to carry out very different functional roles, underscored by the large difference between their midpoint potentials of nearly 600 mV. We have determined the X-ray crystal structures of both proteins isolated from the cyanobacterium Arthrospira maxima. The two structures are remarkably similar, superimposing on backbone atoms with an rmsd of 0.7 A. Comparison of the two structures suggests that differences in solvent exposure of the heme and the electrostatic environment of the heme propionates, as well as in heme iron ligation, are the main determinants of midpoint potential in the two proteins. In addition, the crystal packing of both A. maxima cytochrome c-549 and cytochrome c(6) suggests that the proteins oligomerize. Finally, the cytochrome c-549 dimer we observe can be readily fit into the recently described model of cyanobacterial photosystem II.  相似文献   

15.
Resonance Raman spectra of cytochrome b6f complexes isolated from spinach chloroplasts have been obtained. Selective resonance enhancements and partial reductions of the complex by redox mediators were used to isolate and identify the contributions of heme b6 and heme f sites to the observed spectra. Corresponding spectra for turnip cytochrome f have also been obtained. Power-dependent photoreduction was observed in cytochrome f of the complex as well as in the isolated cytochrome f during the course of the Raman experiments.  相似文献   

16.
The reactions of Rhodopseudomonas viridis cytochrome c2 and horse cytochrome c with Rps. viridis photosynthetic reaction centers were studied by using both single- and double-flash excitation. Single-flash excitation of the reaction centers resulted in rapid photooxidation of cytochrome c-556 in the cytochrome subunit of the reaction center. The photooxidized cytochrome c-556 was subsequently reduced by electron transfer from ferrocytochrome c2 present in the solution. The rate constant for this reaction had a hyperbolic dependence on the concentration of cytochrome c2, consistent with the formation of a complex between cytochrome c2 and the reaction center. The dissociation constant of the complex was estimated to be 30 microM, and the rate of electron transfer within the 1:1 complex was 270 s-1. Double-flash experiments revealed that ferricytochrome c2 dissociated from the reaction center with a rate constant of greater than 100 s-1 and allowed another molecule of ferrocytochrome c2 to react. When both cytochrome c-556 and cytochrome c-559 were photooxidized with a double flash, the rate constant for reduction of both components was the same as that observed for cytochrome c-556 alone. The observed rate constant decreased by a factor of 14 as the ionic strength was increased from 5 mM to 1 M, indicating that electrostatic interactions contributed to binding. Molecular modeling studies revealed a possible cytochrome c2 binding site on the cytochrome subunit of the reaction center involving the negatively charged residues Glu-93, Glu-85, Glu-79, and Glu-67 which surround the heme crevice of cytochrome c-554.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The effects of redox conversions of plastocyanin copper chromophore on the formation of plastocyanin complexes with cytochrome f and the reaction center of photosystem I from pea chloroplasts were studied. In order to investigate the complex formation plastocyanin and cytochrome f were immobilized on Sephadex G-200. The cytochrome f and reaction center assembly takes place on the immobilized plastocyanin, which is necessary for cytochrome f photooxidation. It was found that in a reconstituted system the reduced plastocyanin forms more stable complexes with the proteins than the oxidized one, which is due to its lower pI value.  相似文献   

18.
The role of electrostatic interactions in determining the rate of electron transfer between cytochrome f and plastocyanin has been examined in vitro with mutants of turnip cytochrome f and mutants of pea and spinach plastocyanins. Mutation of lysine residues Lys58, Lys65 and Lys187 of cytochrome f to neutral or acidic residues resulted in decreased binding constants and decreased rates of electron transfer to wild-type pea plastocyanin. Interaction of the cytochrome f mutant K187E with the pea plastocyanin mutant D51K gave a further decrease in electron transfer rate, indicating that a complementary charge pair at these positions could not compensate for the decreased overall charge on the proteins. Similar results were obtained with the interaction of the cytochrome f mutant K187E with single, double and triple mutants of residues in the acidic patches of spinach plastocyanin. These results suggest that the lysine residues of the basic patch on cytochrome f are predominantly involved in long-range electrostatic interactions with plastocyanin. However, analysis of the data using thermodynamic cycles provided evidence for the interaction of Lys187 of cytochrome f with Asp51, Asp42 and Glu43 of plastocyanin in the complex, in agreement with a structural model of a cytochrome f-plastocyanin complex determined by NMR.  相似文献   

19.
A method for fluorescence detection of a protein's redox state based on resonance energy transfer from an attached fluorescence label to the prosthetic group of the redox protein is described and tested for proteins containing three types of prosthetic groups: a type-1 copper site (azurin, amicyanin, plastocyanin, and pseudoazurin), a heme group (cytochrome c550), and a flavin mononucleotide (flavodoxin). This method permits one to reliably distinguish between reduced and oxidized proteins and to perform potentiometric titrations at submicromolar concentrations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号