首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon monoxide (CO) and nitric oxide (NO) are important paracrine messengers in the newborn cerebrovasculature that may act as comessengers. Here, we investigated the role of NO in CO-mediated dilations in the newborn cerebrovasculature. Arteriolar branches of the middle cerebral artery (100-200 microm) were isolated from 3- to 7-day-old piglets and cannulated at each end in a superfusion chamber, and intravascular pressure was elevated to 30 mmHg, which resulted in the development of myogenic tone. Endothelium removal abolished dilations of pressurized pial arterioles to bradykinin and to the CO-releasing molecule Mn(2)(CO)(10) [dimanganese decacarbonyl (DMDC)] but not dilations to isoproterenol. With endothelium intact, N(omega)-nitro-l-arginine (l-NNA), 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), or tetraethylammonium chloride (TEA(+)), inhibitors of NO synthase (NOS), guanylyl cyclase, and large-conductance Ca(2+)-activated K(+) (K(Ca)) channels, respectively, also blocked dilation induced by DMDC. After inhibition of NOS, a constant concentration of sodium nitroprusside (SNP), a NO donor that only dilated the vessel 6%, returned dilation to DMDC. The stable cGMP analog 8-bromo-cGMP also restored dilation to DMDC in endothelium-intact, l-NNA-treated, or endothelium-denuded arterioles, and this effect was blocked by TEA(+). Similarly, in the continued presence of ODQ, 8-bromo-cGMP restored DMDC-induced dilations. These findings suggest that endothelium-derived NO stimulates guanylyl cyclase in vascular smooth muscle cells and, thereby, permits CO to cause dilation by activating K(Ca) channels. Such a requirement for NO could explain the endothelium dependency of CO-induced dilation in piglet pial arterioles.  相似文献   

2.
Carbon monoxide (CO) is an endogenous dilator in the newborn cerebral microcirculation. Other dilators include prostanoids and nitric oxide (NO), and interactions among the systems are likely. Experiments on anesthetized piglets with cranial windows address the hypothesis that CO-induced dilation of pial arterioles involves interaction with the prostanoid and NO systems. Topical application of CO or the heme oxygenase substrate heme-L-lysinate (HLL) produced dilation. Indomethacin, N(omega)-nitro-L-arginine (L-NNA), and either iberiotoxin or tetraethylammonium chloride (TEA) were used to inhibit prostanoids, NO, and Ca(2+)-activated K(+) (K(Ca)) channels, respectively. Indomethacin, L-NNA, iberiotoxin, or TEA blocked cerebral vasodilation to CO and HLL. Vasodilations to both CO and HLL were returned to indomethacin-treated piglets by topical application of iloprost. Vasodilations to both CO and HLL were returned to L-NNA-treated piglets by sodium nitroprusside but not iloprost. In iberiotoxin- or TEA-treated piglets, dilations to CO and HLL could not be restored by either iloprost or sodium nitroprusside. The dilator actions of CO involve prostacyclin and NO as permissive enablers. The permissive actions of prostacyclin and NO may alter the K(Ca) channel response to CO because neither iloprost nor sodium nitroprusside could restore dilation to CO when these channels were blocked.  相似文献   

3.
Prostacyclin permissively allows increased cAMP and cerebral vasodilation to hypercapnia in piglets. The prostacyclin receptor (IP) is coupled to phospholipase C (PLC) in piglet cerebral microvascular smooth muscle cells (SMC). We hypothesize that inhibition of PLC blocks the permissive action of IP receptor agonist, iloprost, and direct activation of PKC substitutes for the IP receptor agonist in SMC. SMC cAMP production was measured at normal pHi/pHo and with reduced pHi/pHo in the absence and presence of iloprost (100 pM). Half of the cells were pretreated with U73122, the PLC inhibitor, which decreased the basal IP3 and blocked the increase in IP3 caused by iloprost. Without iloprost, decreasing pHi/pHo increased cAMP production (40%). With iloprost, the cAMP response to acidosis increased to over 80%. U73122 prevented accentuation of the cAMP response by iloprost. Phorbol myristate acetate augmented the response to acidosis similarly to iloprost. These data suggest IP agonists augment the cAMP response to acidosis via coupling through PLC to activate PKC.  相似文献   

4.
T A McCalden  R G Nath  K Thiele 《Life sciences》1984,34(19):1801-1807
The cerebral blood flow (CBF H/A) and the production of a stable prostacyclin metabolite, 6-Keto PGF 1 alpha ( 6KPGF ) was studied in 5 baboons in control, hypercapnic and hypoxic conditions. In steady-state conditions CBF H/A was measured by the clearance of an intra-arterial bolus injection of 133xenon and arterial and cerebral venous blood was sampled for assay of 6KPGF by radioimmunoassay. Both hypercapnia and hypoxia significantly increased CBF H/A and both increments were abolished by indomethacin. However, only hypoxia showed an increased 6KPGF production. Thus, hypoxia, but not hypercapnia, appears to produce cerebral vasodilation by increasing prostacyclin production.  相似文献   

5.
The gaseous compound carbon monoxide (CO) has been identified as an important endogenous biological messenger in brain and is a major component in regulation of cerebrovascular circulation in newborns. CO is produced endogenously by catabolism of heme to CO, free iron, and biliverdin during enzymatic degradation of heme by heme oxygenase (HO). The present study was designed to test the hypothesis that endogenously produced CO contributes to hypotension-induced vasodilation of cerebral arterioles. Experiments used anesthetized piglets with implanted, closed cranial windows. Topical application of the HO substrate heme-l-lysinate caused dilation of pial arterioles that was blocked by a metal porphyrin inhibitor of HO, chromium mesoporphyrin (CrMP). In normotensive piglets (arterial pressure 64 +/- 4 mmHg), CrMP did not cause vasoconstriction of pial arterioles but rather a transient dilation. Hypotension (50% of basal blood pressure) increased cerebral CO production and dilated pial arterioles from 66 +/- 2 to 92 +/- 7 microm. In hypotensive piglets, topical CrMP or intravenous tin protoporphyrin decreased cerebral CO production and produced pial arteriolar constriction to normotensive diameters. In additional experiments, because prostacyclin and nitric oxide (NO) are also key dilators that can contribute to cerebrovascular dilation, we held their levels constant. NO/prostacyclin clamp was accomplished with continuous, simultaneous application of indomethacin, N(omega)-nitro-l-arginine, and minimal dilatory concentrations of iloprost and sodium nitroprusside. With constant NO and prostacyclin, the transient dilator and prolonged constrictor responses to CrMP of normotensive and hypotensive piglets, respectively, were the same as when NO and prostaglandins were not held constant. These data suggest that endogenously produced CO contributes to cerebrovascular dilation in response to reduced perfusion pressure.  相似文献   

6.
Severe dyslipidemia and the associated oxidative stress could accelerate the age-related decline in cerebrovascular endothelial function and cerebral blood flow (CBF), leading to neuronal loss and impaired learning abilities. We hypothesized that a chronic treatment with the polyphenol catechin would prevent endothelial dysfunction, maintain CBF responses, and protect learning abilities in atherosclerotic (ATX) mice. We treated ATX (C57Bl/6-LDLR(-/-)hApoB(+/+); 3 mo old) mice with catechin (30 mg · kg(-1) · day(-1)) for 3 mo, and C57Bl/6 [wild type (WT), 3 and 6 mo old] mice were used as controls. ACh- and flow-mediated dilations (FMD) were recorded in pressurized cerebral arteries. Basal CBF and increases in CBF induced by whisker stimulation were measured by optical coherence tomography and Doppler, respectively. Learning capacities were evaluated with the Morris water maze test. Compared with 6-mo-old WT mice, cerebral arteries from 6-mo-old ATX mice displayed a higher myogenic tone, lower responses to ACh and FMD, and were insensitive to NOS inhibition (P < 0.05), suggesting endothelial dysfunction. Basal and increases in CBF were lower in 6-mo-old ATX than WT mice (P < 0.05). A decline in the learning capabilities was also observed in ATX mice (P < 0.05). Catechin 1) reduced cerebral superoxide staining (P < 0.05) in ATX mice, 2) restored endothelial function by reducing myogenic tone, improving ACh- and FMD and restoring the sensitivity to nitric oxide synthase inhibition (P < 0.05), 3) increased the changes in CBF during stimulation but not basal CBF, and 4) prevented the decline in learning abilities (P < 0.05). In conclusion, catechin treatment of ATX mice prevents cerebrovascular dysfunctions and the associated decline in learning capacities.  相似文献   

7.
ATP is thought to be released to the extracellular compartment by neurons and astrocytes during neural activation. We examined whether ATP exerts its effect of promoting pial arteriolar dilation (PAD) directly or upon conversion (via ecto-nucleotidase action) to AMP and adenosine. Blockade of extracellular direct ATP to AMP conversion, with ARL-67156, significantly reduced sciatic nerve stimulation-evoked PADs by 68%. We then monitored PADs during suffusions of ATP, ADP, AMP, and adenosine in the presence and absence of the following: 1) the ecto-5'-nucleotidase inhibitor α,β-methylene adenosine 5'-diphosphate (AOPCP), 2) the A(2) receptor blocker ZM 241385, 3) the ADP P2Y(1) receptor antagonist MRS 2179, and 4) ARL-67156. Vasodilations induced by 1 and 10 μM, but not 100 μM, ATP were markedly attenuated by ZM 241385, AOPCP, and ARL-67156. Substantial loss of reactivity to 100 μM ATP required coapplications of ZM 241385 and MRS 2179. Dilations induced by ADP were blocked by MRS 2179 but were not affected by either ZM 241385 or AOPCP. AMP-elicited dilation was partially inhibited by AOPCP and completely abolished by ZM 241385. Collectively, these and previous results indicate that extracellular ATP-derived adenosine and AMP, via A(2) receptors, play key roles in neural activation-evoked PAD. However, at high extracellular ATP levels, some conversion to ADP may occur and contribute to PAD through P2Y(1) activation.  相似文献   

8.
We examined the relative contributions from nitric oxide (NO) and catecholaminergic pathways in promoting cerebral arteriolar dilation during hypoglycemia (plasma glucose congruent with 1.4 mM). To that end, we monitored the effects of beta-adrenoceptor (beta-AR) blockade with propranolol (Pro, 1.5 mg/kg iv), neuronal nitric oxide synthase (nNOS) inhibition with 7-nitroindazole (7-NI, 40 mg/kg ip) or ARR-17477 (300 microM, via topical application), or combined intravenous Pro + 7-NI or ARR-17477 on pial arteriolar diameter changes in anesthetized rats subjected to insulin-induced hypoglycemia. Additional experiments, employing topically applied TTX (1 microM), addressed the possibility that the pial arteriolar response to hypoglycemia required neuronal transmission. Separately, Pro and 7-NI elicited modest but statistically insignificant 10-20% reductions in the normal ~40% increase in arteriolar diameter accompanying hypoglycemia. However, combined Pro-7-NI was accompanied by a >80% reduction in the hypoglycemia-induced dilation. On the other hand, the combination of intravenous Pro and topical ARR-17477 did not affect the hypoglycemia response. In the presence of TTX, the pial arteriolar response to hypoglycemia was lost completely. These results suggest that 1) beta-ARs and nNOS-derived NO interact in contributing to hypoglycemia-induced pial arteriolar dilation; 2) the interaction does not occur in the vicinity of the arteriole; and 3) the vasodilating signal is transmitted via a neuronal pathway.  相似文献   

9.
Changes in both pial arteriolar resistance (PAR) and simulated arterial-arteriolar bed resistance (SimR) of a physiologically based biomechanical model of cerebrovascular pressure transmission, the dynamic relationship between arterial blood pressure and intracranial pressure, are used to test the hypothesis that hypercapnia disrupts autoregulatory reactivity. To evaluate pressure reactivity, vasopressin-induced acute hypertension was administered to normocapnic and hypercapnic (N = 12) piglets equipped with closed cranial windows. Pial arteriolar diameters were used to compute arteriolar resistance. Percent change of PAR (%DeltaPAR) and percent change of SimR (%DeltaSimR) in response to vasopressin-induced acute hypertension were computed and compared. Hypercapnia decreased cerebrovascular resistance. Indicative of active autoregulatory reactivity, vasopressin-induced hypertensive challenge resulted in an increase of both %DeltaPAR and %DeltaSimR for all normocapnic piglets. The hypercapnic piglets formed two statistically distinct populations. One-half of the hypercapnic piglets demonstrated a measured decrease of both %DeltaPAR and %DeltaSimR to pressure challenge, indicative of being pressure passive, whereas the other one-half demonstrated an increase in these percentages, indicative of active autoregulation. No other differences in measured variables were detectable between regulating and pressure-passive piglets. Changes in resistance calculated from using the model mirrored those calculated from arteriolar diameter measurements. In conclusion, vasodilation induced by hypercapnia has the potential to disrupt autoregulatory reactivity. Our physiologically based biomechanical model of cerebrovascular pressure transmission accurately estimates the changes in arteriolar resistance during conditions of active and passive cerebrovascular reactivity.  相似文献   

10.
We performed studies to determine whether chronic hypoxia impairs nitric oxide (NO) signaling in resistance level pulmonary arteries (PAs) of newborn piglets. Piglets were maintained in room air (control) or hypoxia (11% O(2)) for either 3 (shorter exposure) or 10 (longer exposure) days. Responses of PAs to a nonselective NO synthase (NOS) antagonist, N(omega)-nitro-L-arginine methylester (L-NAME), a NOS-2-selective antagonist, aminoguanidine, and 7-nitroindazole, a NOS-1-selective antagonist, were measured. Levels of NOS isoforms and of two proteins involved in NOS signaling, heat shock protein (HSP) 90 and caveolin-1, were assessed in PA homogenates. PAs from all groups constricted to L-NAME but not to aminoguanidine or 7-nitroindazole. The magnitude of constriction to L-NAME was similar for PAs from control and hypoxic piglets of the shorter exposure period but was diminished for PAs from hypoxic compared with control piglets of the longer exposure period. NOS-3, HSP90, and caveolin-1 levels were similar in hypoxic and control PAs. These findings indicate that NOS-3, but not-NOS 2 or NOS-1, is involved with basal NO production in PAs from both control and hypoxic piglets. After 10 days of hypoxia, NO function is impaired in PAs despite preserved levels of NOS-3, HSP90, and caveolin-1. The development of NOS-3 dysfunction in resistance level PAs may contribute to the progression of chronic hypoxia-induced pulmonary hypertension in newborn piglets.  相似文献   

11.
We tested the hypothesis that endothelium-dependent dilation in soleus muscle feed arteries (SFA) is impaired by aging due to attenuated nitric oxide (NO)-mediated vasodilation. SFA were isolated from young (4 mo) and old (24 mo) male Fischer 344 rats and cannulated with two glass micropipettes for examination of endothelium-dependent [flow or acetylcholine (ACh)] and endothelium-independent [sodium nitroprusside (SNP)] vasodilator function. Flow- and ACh-induced dilation was significantly attenuated by age, whereas dilation to SNP was not compromised. To determine the mechanism(s) by which aging affected dilator responses to flow and ACh, dilation was assessed in the presence of Nomega-nitro-L-arginine (L-NNA; to inhibit NO synthase), indomethacin (Indo; to inhibit cyclooxygenase), and L-NNA + Indo. In the presence of L-NNA, Indo, or L-NNA + Indo, flow-induced dilation was inhibited in young SFA, resulting in a response to flow that was no longer greater than old SFA. In the presence of L-NNA or Indo, ACh-induced dilation was not significantly inhibited in young or old SFA; however, double blockade with L-NNA + Indo inhibited ACh-induced dilation in young SFA such that the response to ACh was no longer greater than old SFA. Collectively, these data indicate that aging impairs vasodilator responses in SFA by attenuating NO- and prostacyclin-mediated, endothelium-dependent, dilation.  相似文献   

12.
Flow-induced dilation of gracilis muscle arterioles was examined in both genders of control rats and rats chronically treated with N(omega)-nitro-L-arginine methyl ester (L-NAME). After L-NAME treatment (4 wk), systolic blood pressure was significantly increased compared with control, whereas the plasma concentration of nitrate/nitrite was significantly reduced. Isolated and pressurized arterioles dilated significantly in response to increases in flow (0-25 microl/min). Flow-induced dilation was comparable in arterioles of control and L-NAME-treated rats but was significantly greater in female than in male rats. L-NAME + indomethacin, which abolished flow-induced dilation in arterioles of male control rats, inhibited the dilation by only ~75% in female control rats. The residual portion of the response was eliminated by additional administration of miconazole, an inhibitor of cytochrome P-450. Indomethacin did not affect the dilation in female L-NAME-treated rats but completely inhibited the response in male L-NAME-treated rats. The indomethacin-insensitive, flow-induced dilation in female L-NAME-treated arterioles was abolished by miconazole, 6-(2-proparglyoxyphenyl)hexanoic acid, or charybdotoxin. Thus an augmented release of endothelial prostaglandins accounts for the preserved flow-induced dilation in arterioles of male rats, whereas a metabolite of cytochrome P-450 is responsible for the maintenance of flow-induced dilation in female rats, suggesting important differences in the adaptation of the endothelium of arterioles from male and female rats to the lack of nitric oxide (NO) synthesis.  相似文献   

13.
To investigate the role of estrogen in flow-induced dilation (FiD) in nitric oxide (NO) deficiency, FiD was examined in isolated gracilis arterioles of ovariectomized (OVX) and OVX rats with estrogen replacement (OVE). Both groups of rats were treated chronically with N(omega)-nitro-L-arginine methyl ester. Plasma concentration of NO(2)/NO(3) was reduced in both groups. Plasma concentration of estradiol was lower in OVX than in OVE rats. FiD was similar in vessels of the two groups; calculated wall shear stress and basal tone were significantly greater in OVX vs. OVE rats. Indomethacin did not affect FiD in vessels from OVE rats but abolished dilation in vessels from OVX rats. Valeryl salicylate or NS-398 inhibited FiD by approximately 50%, whereas their simultaneous administration eliminated the response in arterioles from OVX rats. In vessels from OVE rats, miconazole or charybdotoxin eliminated FiD. Thus, in NO deficiency, prostaglandins derived from both cyclooxygenase isoforms mediate FiD in gracilis arterioles of OVX rats. Estrogen replacement switches the mediation, showing dependence on endothelium-derived hyperpolarizing factor in the arterioles of OVE rats.  相似文献   

14.
Altered nitric oxide (NO) production could contribute to the pathogenesis of hypoxia-induced pulmonary hypertension. To determine whether parameters of lung NO are altered at an early stage of hypoxia-induced pulmonary hypertension, newborn piglets were exposed to room air (control, n = 21) or 10% O(2) (hypoxia, n = 19) for 3-4 days. Some lungs were isolated and perfused for measurement of exhaled NO output and the perfusate accumulation of nitrite and nitrate (NOx-), the stable metabolites of NO. Pulmonary arteries (20-600-microm diameter) and their accompanying airways were dissected from other lungs and incubated for NOx- determination. Abundances of the nitric oxide synthase (NOS) isoforms endothelial NOS and neural NOS were assessed in homogenates of PAs and airways. The perfusate NOx- accumulation was similar, whereas exhaled NO output was lower for isolated lungs of hypoxic, compared with control, piglets. The incubation solution NOx- did not differ between pulmonary arteries (PAs) of the two groups but was lower for airways of hypoxic, compared with control, piglets. Abundances of both eNOS and nNOS proteins were similar for PA homogenates from the two groups of piglets but were increased in airway homogenates of hypoxic compared with controls. The NO pathway is altered in airways, but not in PAs, at an early stage of hypoxia-induced pulmonary hypertension in newborn piglets.  相似文献   

15.
16.
《Theriogenology》2013,79(9):2071-2086
Prostaglandins (PGs) are critical regulators of a number of reproductive processes, including embryo development and implantation. In the present study, prostacyclin (PGI2) synthase (PGIS) mRNA and protein expression, as well as 6-keto PGF (a PGI2 metabolite) concentration, were investigated in the pig uterus. Endometrial tissue and uterine luminal flushings were obtained on Days 4 to 18 of the estrous cycle and pregnancy. Additionally, conceptuses were collected and examined for PGIS mRNA expression and 6-keto PGF concentration. Regulation of PGI2 synthesis in the porcine endometrium by steroids, conceptus products, and cytokines was studied in vitro and/or in vivo. Endometrial PGIS protein level increased on Days 12 and 16 in pregnant but not in cyclic gilts. Moreover, higher PGIS protein expression on Day 12 of pregnancy was accompanied by a greater content of 6-keto PGF in the endometrium. The concentration of 6-keto PGF in uterine luminal flushings increased substantially on Days 16 and 18 in pregnant gilts and was higher than in cyclic animals. Greater PGIS mRNA expression and PGI2 metabolite concentration were detected in Day 12 and 14 conceptuses, respectively. Incubation of endometrial explants with conceptus-conditioned medium resulted in upregulation of PGIS protein expression and increased PGI2 secretion. Moreover, PGIS mRNA and protein expression were upregulated in the endometrium collected from gravid uterine horn on Day 14 of pregnancy. In summary, PGIS is differentially expressed in the endometrium of cyclic and pregnant gilts resulting in higher PGI2 synthesis in pregnant animals. Porcine conceptuses are important regulators of endometrial PGIS expression and PGI2 release during the implantation period.  相似文献   

17.
18.
Obesity is a risk factor for hypertension and other vascular disease. The aim of this study was to examine the effect of diet-induced obesity on endothelium-dependent dilation of rat cremaster muscle arterioles. Male Sprague-Dawley rats (213 ± 1 g) were fed a cafeteria-style high-fat or control diet for 16-20 wk. Control rats weighed 558 ± 7 g compared with obese rats 762 ± 12 g (n = 52-56; P < 0.05). Diet-induced obesity had no effect on acetylcholine (ACh)-induced dilation of isolated, pressurized (70 mmHg) arterioles, but sodium nitroprusside (SNP)-induced vasodilation was enhanced. ACh-induced dilation of arterioles from control rats was abolished by a combination of the K(Ca) blockers apamin, 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34), and iberiotoxin (IBTX; all 0.1 μmol/l), with no apparent role for nitric oxide (NO). In arterioles from obese rats, however, IBTX had no effect on responses to ACh while the NO synthase (NOS)/guanylate cyclase inhibitors N(ω)-nitro-L-arginine methyl ester (L-NAME; 100 μmol/l)/1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 μmol/l) partially inhibited ACh-induced dilation. Furthermore, NOS activity (but not endothelial NOS expression) was increased in arteries from obese rats. L-NAME/ODQ alone or removal of the endothelium constricted arterioles from obese but not control rats. Expression of caveolin-1 and -2 oligomers (but not monomers or caveolin-3) was increased in arterioles from obese rats. The number of caveolae was reduced in the endothelium of arteries, and caveolae density was increased at the ends of smooth muscle cells from obese rats. Diet-induced obesity abolished the contribution of large-conductance Ca(2+)-activated K(+) channel to ACh-mediated endothelium-dependent dilation of rat cremaster muscle arterioles, while increasing NOS activity and inducing an NO-dependent component.  相似文献   

19.
20.
Vasomotor reactions upon focal stimulation of arterioles have been shown to be conducted along the vascular wall. Such a conduction, which is assumed to reflect the spread of electrical signals, may contribute to coordination of responses within a vascular segment. We aimed to identify which endothelial autacoid(s) act as mediators of the local and conducted dilator responses, respectively. To this end, arterioles in the hamster cremaster microcirculation were locally stimulated with endothelium-dependent [acetylcholine (ACh)] or endothelium-independent dilators [sodium nitroprusside (SNP)], and the resulting changes in diameter were measured using a videomicroscopy technique at the site of application and up to 1.4 mm upstream at distant sites. Experiments were also performed after blockade of nitric oxide (NO) synthase, cyclooxygenase, P-450 monooxygenase, or K(+) channels. Dilations upon ACh (71 +/- 3%) were conducted rapidly (<1 s) to upstream sites (at 1.4 mm: 37 +/- 5%). Although the NO donor SNP induced a similar local dilation (71 +/- 7%), this response was not conducted. Maximal amplitudes of ACh-induced dilations were not attenuated after inhibition of NO synthase and cyclooxygenase at the local and remote sites. However, additional treatment with a P-450 monooxygenase blocker (sulfaphenazole) strongly attenuated the local response (from 62 +/- 9 to 17 +/- 5%) and abrogated dilations at distant sites (at 0.67 mm: from 23 +/- 4% to 4 +/- 3%). Likewise, 17-octadecynoic acid strongly attenuated local and remote responses. Blockers of Ca(2+)-dependent K(+) channels (charybdotoxin or iberiotoxin) attenuated dilations at the local and remote sites after focal application at the ACh stimulation site. In marked contrast, treatment of the upstream site with these blockers was without any effect. We conclude that upon local stimulation with ACh, a cytochrome P-450 monooxygenase product is generated that induces local dilation via the activation of Ca(2+)-dependent K(+) channels and initiates conduction of the dilation. In contrast to the local site, neither activation of these K(+) channels nor the synthesis of NO or prostaglandins is necessary to dilate the arterioles at remote, distant sites. This suggests that endothelium-derived hyperpolarizing factor serves as an important mediator to initiate conducted dilations and, by doing so, may act as a key player in the coordination of arteriolar behavior in the microcirculatory network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号