首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
白腐菌的研究进展及其在重金属修复中的展望   总被引:3,自引:0,他引:3  
白腐菌是一类特殊的丝状真菌,能降解多种污染物质,具有广谱、彻底、高效、无专一性的 特点,在生物修复中有广阔的应用前景。综述了白腐菌的分类、酶系、降解机理以及应用于有机 物污染的研究现状,特别介绍了白腐菌在重金属污染的生物修复的应用进展情况,包括白腐菌吸 附重金属的原理、在重金属污染的废水中的研究应用现状及在修复重金属污染土壤中需考虑的 因素。同时展望了白腐菌在重金属污染及复合污染的生物修复中的应用前景。  相似文献   

2.
Sheer enormity of lignocellulosics makes them potential feedstock for biofuel production but, their conversion into fermentable sugars is a major hurdle. They have to be pretreated physically, chemically, or biologically to be used by fermenting organisms for production of ethanol. Each lignocellulosic substrate is a complex mix of cellulose, hemicellulose and lignin, bound in a matrix. While cellulose and hemicellulose yield fermentable sugars, lignin is the most recalcitrant polymer, consisting of phenyl-propanoid units. Many microorganisms in nature are able to attack and degrade lignin, thus making access to cellulose easy. Such organisms are abundantly found in forest leaf litter/composts and especially include the wood rotting fungi, actinomycetes and bacteria. These microorganisms possess enzyme systems to attack, depolymerize and degrade the polymers in lignocellulosic substrates. Current pretreatment research is targeted towards developing processes which are mild, economical and environment friendly facilitating subsequent saccharification of cellulose and its fermentation to ethanol. Besides being the critical step, pretreatment is also cost intensive. Biological treatments with white rot fungi and Streptomyces have been studied for delignification of pulp, increasing digestibility of lignocellulosics for animal feed and for bioremediation of paper mill effluents. Such lignocellulolytic organisms can prove extremely useful in production of bioethanol when used for removal of lignin from lignocellulosic substrate and also for cellulase production. Our studies on treatment of hardwood and softwood residues with Streptomyces griseus isolated from leaf litter showed that it enhanced the mild alkaline solubilisation of lignins and also produced high levels of the cellulase complex when growing on wood substrates. Lignin loss (Klason lignin) observed was 10.5 and 23.5% in case of soft wood and hard wood, respectively. Thus, biological pretreatment process for lignocellulosic substrate using lignolytic organisms such as actinomycetes and white rot fungi can be developed for facilitating efficient enzymatic digestibility of cellulose.  相似文献   

3.
The present review emphasizes on the use of Polyphenol oxidase (PPO) enzyme in the bioremediation of phenolic contaminants from industrial wastewater. PPO is a group of enzyme that mainly exists in two forms; tyrosinase (E.C. 1.14.18.1) and laccase (E.C. 1.10.3.1) which are widely distributed among microorganisms, plants and animals. These oxidoreductive enzymes remain effective in a wide range of pH and temperature, particularly if they are immobilized on some carrier or matrices, and they can degrade a wide variety of mono and/or diphenolic compounds. However, high production costs inhibit the widespread use of these enzymes for remediation in industrial scale. Nevertheless, bench studies and field studies have shown enzymatic wastewater treatment to be feasible options for biodegradation of phenols through biological route. Nanomaterials-PPO conjugates have been also applied for removal of phenols which has successfully lower down the drawbacks of enzymatic water treatment. Therefore in this article various approaches and current state of use of PPO in the bioremediation of wastewater, as well as the benefits and disadvantages associated with the use of such enzymes have been overviewed.  相似文献   

4.
Phytoremediation--a novel and promising approach for environmental clean-up   总被引:13,自引:0,他引:13  
Phytoremediation is an eco friendly approach for remediation of contaminated soil and water using plants. Phytoremediation is comprised of two components, one by the root colonizing microbes and the other by plants themselves, which degrade the toxic compounds to further non-toxic metabolites. Various compounds, viz. organic compounds, xenobiotics, pesticides and heavy metals, are among the contaminants that can be effectively remediated by plants. Plant cell cultures, hairy roots and algae have been studied for their ability to degrade a number of contaminants. They exhibit various enzymatic activities for degradation of xenobiotics, viz. dehalogenation, denitrification leading to breakdown of complex compounds to simple and non-toxic products. Plants and algae also have the ability to hyper accumulate various heavy metals by the action of phytochelatins and metallothioneins forming complexes with heavy metals and translocate them into vacuoles. Molecular cloning and expression of heavy metal accumulator genes and xenobiotic degrading enzyme coding genes resulted in enhanced remediation rates, which will be helpful in making the process for large-scale application to remediate vast areas of contaminated soils. A few companies worldwide are also working on this aspect of bioremediation, mainly by transgenic plants to replace expensive physical or chemical remediation techniques. Selection and testing multiple hyperaccumulator plants, protein engineering ofphytochelatin and membrane transporter genes and their expression would enhance the rate of phytoremediation, making this process a successful one for bioremediation of environmental contamination. Recent years have seen major investments in the R&D, which have also resulted in competition of filing patents by several companies for economic gains. The details of science & technology related to phytoremediation have been discussed with a focus on future trends and prospects of global relevance.  相似文献   

5.
Petroleum sludge contains recalcitrant residuals. These compounds because of being toxic to humans and other organism are of the major concerns. Therefore, petroleum sludge should be safely disposed. Physicochemical methods which are used by this sector are mostly expensive and need complex devices. Bioremediation methods because of being eco-friendly and cost-effective overcome most of the limitations of physicochemical treatments. Microbial strains capable to degrade petroleum hydrocarbons are practically present in all soils and sediments and their population density increases in contact with contaminants. Bacterial strains cannot degrade alone all kinds of petroleum hydrocarbons, rather microbial consortium should collaborate with each other for degradation of petroleum hydrocarbon mixtures. Horizontal transfer of functional genes between bacteria plays an important role in increasing the metabolic potential of the microbial community. Therefore, selecting a suitable degrading gene and tracking its horizontal transfer would be a useful approach to evaluate the bioremediation process and to assess the bioremediation potential of contaminated sites.  相似文献   

6.
ABSTRACT Polycyclic aromatic hydrocarbons (PAHs) are present in products made from creosote, coal tar, and asphalt. When wood pile treated with creosote is placed in soil, PAHs can contaminate it. Creosote has been used for wood preservation in the past and is composed of approximately 85% PAHs and 15% phenolic compounds. PAHs cause harmful effects to humans and the environment because of their carcinogenic and mutagenic properties. White rot fungi can degrade not only lignin, but also recalcitrant organic compounds such as PAHs. Among numerous white rot fungi used in previous studies, four species were selected to degrade PAHs in a liquid medium. From this evaluation of the degradation of PAHs by the four fungal isolates, two species were ultimately selected for the highest rates of removal. Following 2 weeks of incubation with Peniophora incarnata KUC8836, the degradation rates of phenanthrene, fluoranthene, and pyrene were 86.5%, 77.4%, and 82.6%, respectively. Mycoaciella bispora KUC8201 showed the highest degradation rate for anthracene (61.8%). Hence, bioremediation of creosote-contaminated soil with an initial concentration of 229.49 mg kg?1 PAHs was carried out using the two selected fungi because they could simultaneously degrade 13 more PAHs than the comparison species. More importantly, isolates of P. incarnata KUC8836 were discovered as powerful degraders of PAHs by producing laccase and manganese-dependent peroxidase (MnP), with 1.7- and 1.1-fold higher than the comparison species, respectively. Therefore, the white rot fungus may be proposed for the removal of PAHs and xenobiotic compounds in contaminated environments.  相似文献   

7.
A comprehensive overview of elements in bioremediation   总被引:3,自引:0,他引:3  
Sustainable development requires the development and promotion of environmental management and a constant search for green technologies to treat a wide range of aquatic and terrestrial habitats contaminated by increasing anthropogenic activities. Bioremediation is an increasingly popular alternative to conventional methods for treating waste compounds and media with the possibility to degrade contaminants using natural microbial activity mediated by different consortia of microbial strains. Many studies about bioremediation have been reported and the scientific literature has revealed the progressive emergence of various bioremediation techniques. In this review, we discuss the various in situ and ex situ bioremediation techniques and elaborate on the anaerobic digestion technology, phytoremediation, hyperaccumulation, composting and biosorption for their effectiveness in the biotreatment, stabilization and eventually overall remediation of contaminated strata and environments. The review ends with a note on the recent advances genetic engineering and nanotechnology have had in improving bioremediation. Case studies have also been extensively revisited to support the discussions on biosorption of heavy metals, gene probes used in molecular diagnostics, bioremediation studies of contaminants in vadose soils, bioremediation of oil contaminated soils, bioremediation of contaminants from mining sites, air sparging, slurry phase bioremediation, phytoremediation studies for pollutants and heavy metal hyperaccumulators, and vermicomposting.  相似文献   

8.
ABSTRACT

Phytoremediation is an eco friendly approach for remediation of contaminated soil and water using plants. Phytoremediation is comprised of two components, one by the root colonizing microbes and the other by plants themselves, which degrade the toxic compounds to further non-toxic metabolites. Various compounds, viz. organic compounds, xenobiotics, pesticides and heavy metals, are among the contaminants that can be effectively remediated by plants. Plant cell cultures, hairy roots and algae have been studied for their ability to degrade a number of contaminants. They exhibit various enzymatic activities for degradation of xenobiotics, viz. dehalogenation, denitrification leading to breakdown of complex compounds to simple and non-toxic products. Plants and algae also have the ability to hyper accumulate various heavy metals by the action of phytochelatins and metallothioneins forming complexes with heavy metals and translocate them into vacuoles. Molecular cloning and expression of heavy metal accumulator genes and xenobiotic degrading enzyme coding genes resulted in enhanced remediation rates, which will be helpful in making the process for large-scale application to remediate vast areas of contaminated soils. A few companies worldwide are also working on this aspect of bioremediation, mainly by transgenic plants to replace expensive physical or chemical remediation techniques. Selection and testing multiple hyperaccumulator plants, protein engineering of phytochelatin and membrane transporter genes and their expression would enhance the rate of phytoremediation, making this process a successful one for bioremediation of environmental contamination. Recent years have seen major investments in the R&D, which have also resulted in competition of filing patents by several companies for economic gains. The details of science & technology related to phytoremediation have been discussed with a focus on future trends and prospects of global relevance.  相似文献   

9.
海洋石油污染物的微生物降解与生物修复   总被引:28,自引:0,他引:28  
石油是海洋环境的主要污染物 ,已经对海洋及近岸环境造成了严重的危害。微生物降解是海洋石油污染去除的主要途径。海洋石油污染物的微生物降解受石油组分与理化性质、环境条件以及微生物群落组成等多方面因素的制约 ,N和P营养的缺乏是海洋石油污染物生物降解的主要限制因子。在生物降解研究基础上发展起来的生物修复技术在海洋石油污染治理中发展潜力巨大 ,并且取得了一系列成果。介绍了海洋中石油污染物的来源、转化过程、降解机理、影响生物降解因素及生物修复技术等方面内容 ,强调了生物修复技术在治理海洋石油污染环境中的优势和重要性 ,指出目前生物修复技术存在的问题。  相似文献   

10.
Basic studies and applications on bioremediation of DDT: A review   总被引:2,自引:0,他引:2  
The persistent insecticide DDT (1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane) has been widely used for pest control in the management of mosquito-borne malaria and is still used for that purpose in some tropical countries. Considering the potential for negative effects due to DDT contamination, it is necessary to determine effective methods of remediation. Several methods have been used to degrade or transform DDT into less toxic compounds. Bacteria and white-rot fungi (WRF) have been shown to enhance the degradation process in soil using both pure and mixed cultures. Recently, a biological approach has been used as an environmentally-friendly treatment, using new biological sources to degrade DDT, e.g. brown-rot fungi (BRF), cattle manure compost (CMC) and spent mushroom waste (SMW). In this review, the abilities of BRF, CMC and SMW to degrade DDT are discussed, including the mechanisms and degradation pathways. Furthermore, application of these sources to contaminated soil is also described. The review discusses which is the best source for bioremediation of DDT.  相似文献   

11.
白腐菌的研究现状及其在堆肥中的应用展望   总被引:27,自引:0,他引:27  
白腐真菌是一种能够引起木材白色腐朽的担子菌,因其特殊的代谢类型及其独有的细胞外降解特质,能降解各种难生物降解的有机污染物而成为近年来国内外研究的热点。本从白腐菌的分类与来源、降解机制及其在工业、环境污染治理方面的应用研究进展等对近年来白腐菌的研究现状予以综述,并对其在城市垃圾堆肥化中的应用前景做了展望。  相似文献   

12.
Bioremediation of aromatic hydrocarbons in groundwater and sediments is often limited by dissolved oxygen. Many aromatic hydrocarbons degrade very slowly or not at all under anaerobic conditions. Nitrate is a good alternative electron acceptor to oxygen, and denitrifying bacteria are commonly found in the subsurface and in association with contaminated aquifer materials. Providing both nitrate and microaerophilic levels of oxygen may result in oxidation of the stable benzene rings in aromatic contaminants and allow for the intermediates of this oxidation to degrade via denitrification. The effects of using mixed electron acceptors on biodegradation of subsurface contaminants is unclear. Below some critical oxygen threshold, aerobic biodegradation is inhibited, however high levels of oxygen inhibit denitrification. The mechanisms which regulate electron transfer to oxygen and nitrate are complex. This review: 1) describes the factors which may affect the utilization of oxygen and nitrate as dual electron acceptors during biodegradation; 2) summarizes the incidence of dual use of nitrate and oxygen (aerobic denitrification); and 3) presents evidence of the effectiveness of bioremediation under mixed oxygen/nitrate conditions. Received 08 November 1995/ Accepted in revised form 09 June 1996  相似文献   

13.
Biopulping can be an alternative to the traditional methods of pulping. Biopulping use fungi that are known to be able to degrade wood as well as lignin constituent of wood. Amongst these white rot fungi are the most proficient biodegrader. The fungus is non sporulating and is a selective lignin degrader. It colonizes either on living or dead wood and decomposes all wood polymers including lignin and extractives making it to be extremely potential to be used in biopulping. The process of biopulping reduces the utilization of chemical in pulping industry and help in decreasing the environmental hazard caused by normal pulping. The present review deals with diverse aspects of biopulping and their ecological as well as economic significances.  相似文献   

14.
There has been increasing interest in extracellular enzymes from white rot fungi, such as lignin and manganese peroxidases, and laccases, due to their potential to degrade both highly toxic phenolic compounds and lignin. The optimum cultivation conditions for laccase production in semi-solid and liquid medium by Trametes versicolor, Trametes villosa, Lentinula edodes and Botrytis cinerea and the effects of laccase mediator system in E1 effluent were studied. The higher laccase activity (12756 U) was obtained in a liquid culture of T. versicolor in the presence of 1 mM of 2,5-xylidine and 0.4 mM copper salt as inducers. The effluent biotreatments were not efficient in decolorization with any fungal laccases studied. Maximum phenol reduction was approximately 23% in the absence of mediators from T. versicolor. The presence of 1-hydroxybenzotriazole did not increase phenol reduction. However, acetohydroxamic acid, which was not degraded by laccase, acted very efficiently on E1 effluent, reducing 70% and 73% of the total phenol and total organic carbon, respectively. Therefore, acetohydroxamic acid could be applied as a mediator for laccase bioremediation in E1 effluent.  相似文献   

15.
The white rot fungus, Ceriporiopsis subvermispora, is able to degrade lignin in wood without intensive damage to cellulose. Since lignin biodegradation by white rot fungi proceeds by radical reactions, accompanied by the production of a large amount of Fe3+-reductant phenols and reductive radical species in the presence of iron ions, molecular oxygen, and H2O2, C. subvermispora has been proposed to possess a biological system which suppresses the production of a cellulolytic active oxygen species, *OH, by the Fenton reaction. In the present paper, we demonstrate that 1-nonadecene-2,3-dicarboxylic acid (ceriporic acid B), an extracellular metabolite of C. subvermispora, strongly inhibited *OH production and the depolymerization of cellulose by the Fenton reaction in the presence of iron ions, cellulose, H2O2, and a reductant for Fe3+, hydroquinone (HQ), at the physiological pH of the fungus.  相似文献   

16.
Abstract

Bioremediation is a better alternative and widely accepted approach used for efficient degradation of environmental pollutants released from industries, urban and agricultural activities due to its eco-friendly nature. Systems biology helps in the identification of new genes, proteins, metabolites, and metabolic pathways involved in bioremediation. Such information can be used for designing synthetic microbial communities that can degrade multiple recalcitrant pollutants simultaneously. This review gives a brief insight into various systems biology tools towards providing a greater understanding of microbial behaviour and improving the way of bioremediation. These techniques alone or in combination, provide a way to understand and improve the genetic potential of microorganisms to remediate various environmental contaminants efficiently. Further, this review also describes the successful employment of synthetic microbial consortium in the bioremediation. Moreover, In-silico tools are also described to analyse the data obtained through different laboratory experiments as well to predict the behaviour of microbial consortium towards the pollutants using different databases.  相似文献   

17.
The brown rot fungus Wolfiporia cocos and the selective white rot fungus Perenniporia medulla-panis produce peptides and phenolate-derivative compounds as low molecular weight Fe3+-reductants. Phenolates were the major compounds with Fe3+-reducing activity in both fungi and displayed Fe3+-reducing activity at pH 2.0 and 4.5 in the absence and presence of oxalic acid. The chemical structures of these compounds were identified. Together with Fe3+ and H2O2 (mediated Fenton reaction) they produced oxygen radicals that oxidized lignocellulosic polysaccharides and lignin extensively in vitro under conditions similar to those found in vivo. These results indicate that, in addition to the extensively studied Gloeophyllum trabeum—a model brown rot fungus—other brown rot fungi as well as selective white rot fungi, possess the means to promote Fenton chemistry to degrade cellulose and hemicellulose, and to modify lignin. Moreover, new information is provided, particularly regarding how lignin is attacked, and either repolymerized or solubilized depending on the type of fungal attack, and suggests a new pathway for selective white rot degradation of wood. The importance of Fenton reactions mediated by phenolates operating separately or synergistically with carbohydrate-degrading enzymes in brown rot fungi, and lignin-modifying enzymes in white rot fungi is discussed. This research improves our understanding of natural processes in carbon cycling in the environment, which may enable the exploration of novel methods for bioconversion of lignocellulose in the production of biofuels or polymers, in addition to the development of new and better ways to protect wood from degradation by microorganisms.  相似文献   

18.
White rot fungi of the genus Phlebia have demonstrated a high capacity to degrade organic pollutants, including polychlorinated dibenzo-p-dioxins and polychlorinated biphenyls. In this study, we evaluated the ability of 18 white rot fungi species of genus Phlebia to degrade heptachlor and heptachlor epoxide, and described the metabolic pathways by selected white rot fungi. Phlebia tremellosa, Phlebia brevispora and Phlebia acanthocystis removed about 71%, 74% and 90% of heptachlor, respectively, after 14 days of incubation. A large amount of heptachlor epoxide and a small amount of 1-hydroxychlordene and 1-hydroxy-2,3-epoxychlordene were detected as metabolic products of heptachlor from most fungal cultures. The screening of heptachlor epoxide-degrading fungi revealed that several fungi are capable of degrading heptachlor epoxide, which is a recalcitrant metabolite of heptachlor. Phlebia acanthocystis, P. brevispora, Phlebia lindtneri and Phlebia aurea removed about 16%, 16%, 22% and 25% of heptachlor epoxide, respectively, after 14 days of incubation. Heptachlor diol and 1-hydroxy-2,3-epoxychlordene were produced in these fungal cultures as metabolites, suggesting that the hydrolysis and hydroxylation reaction occur in the epoxide ring and in position 1 of heptachlor epoxide, respectively.  相似文献   

19.
Biodegradation is a natural process, where the degradation of a xenobiotic chemical or pesticide by an organism is primarily a strategy for their own survival. Most of these microbes work in natural environment but some modifications can be brought about to encourage the organisms to degrade the pesticide at a faster rate in a limited time frame. This capability of microbe is some times utilized as technology for removal of contaminant from actual site. Knowledge of physiology, biochemistry and genetics of the desired microbe may further enhance the microbial process to achieve bioremediation with precision and with limited or no scope for uncertainty and variability in microbe functioning. Gene encoding for enzyme has been identified for several pesticides, which will provide a new inputs in understanding the microbial capability to degrade a pesticide and develop a super strain to achieve the desired result of bioremediation in a short time.  相似文献   

20.
酶修复土壤农药污染的研究进展   总被引:25,自引:4,他引:21  
和文祥  蒋新  朱茂旭  王芳 《生态学杂志》2001,20(3):47-51,68
1 农药生物修复的重要性和紧迫性农药是人们主动投放于环境中数量最大、毒性最广的一类化学物质 [1] ,据统计 [2 ,5] ,1 960年世界农药的销售额仅为 8.5亿美元 ,1 994年增加到 2 78亿美元 ,增长 32 .71倍。在我国 ,农药至少占农业生产费用的 3% ,每年施用量 5.0× 1 0 5~ 6.0× 1 0 5t,其中约 80 %的农药直接进入环境 ,导致现有耕地的 1 /7受到不同程度污染 ,过量施用的农田约 1 .33×1 0 6ha,可见 ,农药已成为土壤主要污染源之一。同时由于土壤中农药 [4 ]的化学性质比较稳定 ,不易分解 ,如 DDT分解 95%需 4~ 30年 ,六六六 3~ 2 0年 …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号