首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hemopexin: structure,function, and regulation   总被引:1,自引:0,他引:1  
Hemopexin (HPX) is the plasma protein with the highest binding affinity to heme among known proteins. It is mainly expressed in liver, and belongs to acute phase reactants, the synthesis of which is induced after inflammation. Heme is potentially highly toxic because of its ability to intercalate into lipid membrane and to produce hydroxyl radicals. The binding strength between heme and HPX, and the presence of a specific heme-HPX receptor able to catabolize the complex and to induce intracellular antioxidant activities, suggest that hemopexin is the major vehicle for the transportation of heme in the plasma, thus preventing heme-mediated oxidative stress and heme-bound iron loss. In this review, we discuss the experimental data that support this view and show that the most important physiological role of HPX is to act as an antioxidant after blood heme overload, rather than to participate in iron metabolism. Particular attention is also put on the structure of the protein and on its regulation during the acute phase reaction.  相似文献   

2.
3.
Glucose transporters: structure, function, and regulation   总被引:2,自引:0,他引:2  
Glucose is transported into the cell by facilitated diffusion via a family of structurally related proteins, whose expression is tissue-specific. One of these transporters, GLUT4, is expressed specifically in insulin-sensitive tissues. A possible change in the synthesis and/or in the amount of GLUT4 has therefore been studied in situations associated with an increase or a decrease in the effect of insulin on glucose transport. Chronic hyperinsulinemia in rats produces a hyper-response of white adipose tissue to insulin and resistance in skeletal muscle. The hyper-response of white adipose tissue is associated with an increase in GLUT4 mRNA and protein. In contrast, in skeletal muscle, a decrease in GLUT4 mRNA and a decrease (tibialis) or no change (diaphragm) in GLUT4 protein are measured, suggesting a divergent regulation by insulin of glucose transport and transporters in the 2 tissues. In rodents, brown adipose tissue is very sensitive to insulin. The response of this tissue to insulin is decreased in obese insulin-resistant fa/fa rats. Treatment with a beta-adrenergic agonist increases insulin-stimulated glucose transport, GLUT4 protein and mRNA. The data suggest that transporter synthesis can be modulated in vivo by insulin (muscle, white adipose tissue) or by catecholamines (brown adipose tissue).  相似文献   

4.
Biology of amyloid: structure, function, and regulation   总被引:1,自引:0,他引:1  
Amyloids are highly ordered cross-β sheet protein aggregates associated with many diseases including Alzheimer's disease, but also with biological functions such as hormone storage. The cross-β sheet entity comprising an indefinitely repeating intermolecular β sheet motif is unique among protein folds. It grows by recruitment of the corresponding amyloid protein, while its repetitiveness can translate what would be a nonspecific activity as monomer into a potent one through cooperativity. Furthermore, the one-dimensional crystal-like repeat in the amyloid provides a structural framework for polymorphisms. This review summarizes the recent high-resolution structural studies of amyloid fibrils in light of their biological activities. We discuss how the unique properties of amyloids gives rise to many activities and further speculate about currently undocumented biological roles for the amyloid entity. In particular, we propose that amyloids could have existed in a prebiotic world, and may have been the first functional protein fold in living cells.  相似文献   

5.
《Bio Systems》2009,95(3):228-232
Proteins represent versatile building blocks for realization of nanostructured materials of unique structure–function relationship to be applied in nanobiotechnology. Following a recent work [Bruzzese, D., Pastorino, L., Pechkova, E., Sivozhelezov, Nicolini, C., Increase of catalytic activity of lipase towards olive oil by Langmuir-Film Immobilization of Lipase, Enzyme and Microbial Technology, submitted for publication.], the Langmuir–Blodgett technique was utilized to develop nanostructured crystal materials based on enzymes interfacially activated with olive oil as substrate. Particularly, thin films of lipase from both Mucor miehei and Candida rugosa were fabricated and characterized by UV–vis spectroscopy, Atomic force microscopy and biochemical assays. As the first step the M. miehei protein films were studied at the air–water interface and then transferred onto a solid support for further characterization of the enzymatic activity also versus surface pressure, proving that Langmuir–Blodgett film provides a better catalytic effect in lipase than a mere oil–water boundary. Moreover, improvement of lipase catalytic performance was achieved for the M. miehei versus the C. rugosa, despite its almost random distribution of hydrophobic patches and the low purity of its preparation.  相似文献   

6.
Glycosylation is the major modification of proteins, and alters their structures, functions and localizations. Glycosylation of secretory and surface proteins takes place in the endoplasmic reticulum and Golgi apparatus in eukaryotic cells and is classified into four modification pathways, namely N- and O-linked glycosylations, glycosylphosphatidylinositol (GPI)-anchor and C-mannosylation. These modifications are accomplished by sequential addition of single monosaccharides (O-linked glycosylation and C-mannosylation) or en bloc transfer of lipid-linked oligosaccharides (N-linked glycosylation and GPI) onto the proteins. The glycosyltransferases involved in these glycosylations are categorized into two classes based on the type of sugar donor, namely nucleotide-sugars and dolichol-phosphate-sugars, in which the sugar moiety is mannose or glucose. The sugar transfer from dolichol-phosphate-sugars occurs exclusively on the luminal side of the endoplasmic reticulum and is utilized in all four glycosylation pathways. In this review, we focus on the biosynthesis of dolichol-phosphate-mannose, and particularly on the mammalian enzyme complex involved in the reaction.  相似文献   

7.
8.
Guanylyl cyclase structure, function and regulation   总被引:1,自引:0,他引:1  
Potter LR 《Cellular signalling》2011,23(12):1921-1926
Nitric oxide, bicarbonate, natriuretic peptides (ANP, BNP and CNP), guanylins, uroguanylins and guanylyl cyclase activating proteins (GCAPs) activate a family of enzymes variously called guanyl, guanylyl or guanylate cyclases that catalyze the conversion of guanosine triphosphate to cyclic guanosine monophosphate (cGMP) and pyrophosphate. Intracellular cyclic GMP is a second messenger that modulates: platelet aggregation, neurotransmission, sexual arousal, gut peristalsis, blood pressure, long bone growth, intestinal fluid secretion, lipolysis, phototransduction, cardiac hypertrophy and oocyte maturation. This review briefly discusses the discovery of cGMP and guanylyl cyclases, then nitric oxide, nitric oxide synthase and soluble guanylyl cyclase are described in slightly greater detail. Finally, the structure, function, and regulation of the individual mammalian single membrane-spanning guanylyl cyclases GC-A, GC-B, GC-C, GC-D, GC-E, GC-F and GC-G are described in greatest detail as determined by biochemical, cell biological and gene-deletion studies.  相似文献   

9.
10.
11.
Nitrate transporters in plants: structure, function and regulation   总被引:43,自引:0,他引:43  
Physiological studies have established that plants acquire their NO(-3) from the soil through the combined activities of a set of high- and low-affinity NO(-3) transport systems, with the influx of NO(-3) being driven by the H(+) gradient across the plasma membrane. Some of these NO(-3) transport systems are constitutively expressed, while others are NO(-3)-inducible and subject to negative feedback regulation by the products of NO(-3) assimilation. Here we review recent progress in the characterisation of the two families of NO(-3) transporters that have so far been identified in plants, their structure and their regulation, and consider the evidence for their roles in NO(-3) acquisition. We also discuss what is currently known about the genetic basis of NO(-3) induction and feedback repression of the NO(-3) transport and assimilatory pathway in higher plants.  相似文献   

12.
13.
乙酰肝素酶是目前发现的哺乳动物细胞中唯一能切割细胞外基质中硫酸肝素蛋白多糖侧链--硫酸乙酰肝素--的内源性糖苷酶,是抗肿瘤,抗炎症的理想靶点。对其深入研究将有助于揭示组织修复,血管形成,自身免疫,肿瘤转移等生理及病理过程。本就乙酰肝素酶的发现,分子特性,基因定位,转录,表达调控,细胞内的亚定位及其功能活性调控机制方面的研究进展进行综述。  相似文献   

14.
15.
16.
New data are reviewed on intermediate filaments, i.e. on one of the cytoskeleton components. Structural proteins of intermediate filaments, their enzymatic modification, filament-associated proteins and the peculiarities of filament assembly are dealt with. The regularities of expression of intermediate filament proteins in normal tissues are analysed, as well as during differentiation and cultured cell growth. In the final part of the paper possible functions of intermediate filaments are discussed.  相似文献   

17.
18.
脂肪酶是催化油酯水解的一类酶的总称,在清洁剂、食品、纸浆、化工合成等工业都有广泛的应用.本文对各种来源的微生物脂肪酶的结构、生化性质、底物特异性和界面活化现象等方面进行了综述,并介绍了一些脂肪酶的特殊结构和性质.  相似文献   

19.
Lipoprotein lipase: genetics,lipid uptake,and regulation   总被引:15,自引:0,他引:15  
Lipoprotein lipase (LPL) regulates the plasma levels of triglyceride and HDL. Three aspects are reviewed. 1) Clinical implications of human LPL gene variations: common mutations and their effects on plasma lipids and coronary heart disease are discussed. 2) LPL actions in the nervous system, liver, and heart: the discussion focuses on LPL and tissue lipid uptake. 3) LPL gene regulation: the LPL promoter and its regulatory elements are described.  相似文献   

20.
Ye H  Jin XR 《生理科学进展》2001,32(1):62-64
在许多类型细胞均发现低氧可诱导低氧诱导因子-1(HIF-1)水平的增高,说明存在一个普遍的氧感受和低氧信号转导机制,其中HIF-1起着重要的作用。本文综述了HIF-1的结构、功能和活性调节及其与低氧信号转导的关系等方面的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号