首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J blood group active lipoproteins extracted from bovine erythrocytes   总被引:1,自引:0,他引:1  
Ghosts of J-positive bovine erythrocytes were frozen overnight, thawed the next day, washed with ion-free water, and then extracted with a water-n-pentanol mixture. After centrifugation, the aqueous phase contained a great deal of the membrane proteins and lipids in a soluble form along with the J blood-group activity. After preparative ultracentrifugation, about 2/3 of the J activity were recovered in the high-density lipoprotein fraction, while the low-density lipoprotein fraction contained 1/3 J activity. This result is consistent with our finding that on treatment of the stroma lipoproteins with dextran sulphate, about 2/3 of J activity were recovered in the supernatant, 1/3 in the precipitate. These fractions obtained by dextran sulphate treatment were characterized by protein and lipid assay.  相似文献   

2.
1. A triglyceride (TG) lipase is present in whole homogenate and tissue extracts of beef myocardium with characteristics of lipoprotein lipase (LPL); i.e., activity is stimulated by serum, inhibited by NaCl and protamine sulfate, the protein binds to heparin-Sepharose, and the enzyme has an alkaline pH optimum. 2. This TG lipase, eluted from heparin-Sepharose at 0.9-1.0 M NaCl, has an apparent mol. wt of 64 K daltons. Its primary mRNA is 3.7 kb. 3. Expression of LPL mRNA and enzyme activities are in the ratio of approximately 20:8:1 for hearts of mouse, rat and beef, respectively and correlate with r = +0.99.  相似文献   

3.
Lipid-protein interactions play an important direct role in the function of many membrane proteins. We argue they are key players in membrane structure, modulate membrane proteins in more subtle ways than direct binding, and are important for understanding the mechanism of classes of hydrophobic drugs. By directly comparing membrane proteins from different families in the same, complex lipid mixture, we found a unique lipid environment for every protein. Extending this work, we identified both differences and similarities in the lipid environment of GPCRs, dependent on which family they belong to and in some cases their conformational state, with particular emphasis on the distribution of cholesterol. More recently, we have been studying modes of coupling between protein conformation and local membrane properties using model proteins. In more applied approaches, we have used similar methods to investigate specific hypotheses on interactions of lipid and lipid-like molecules with ion channels. We conclude this perspective with some considerations for future work, including a new more sophisticated coarse-grained force field (Martini 3), an interactive visual exploration framework, and opportunities to improve sampling.  相似文献   

4.
The efficiency of several nonionic detergents and a homologous series of zwitterionic detergents for the extraction of acetylcholinesterase (EC 3.1.1.7) from bovine erythrocyte membranes was examined. Of the nonionic detergents examined, the polyoxyethylene-based Tweens were the least effective solubilizing agents. Within this series, increasing the length of the saturated fatty acid chain progressively decreased the efficiency of enzyme recovery, while unsaturation in the side chain reversed this trend. In the Lubrol detergents, where the chain length of the alcohol group is variable, an increase in the length of the polyoxyethylene glycol group decreased the recovery of acetylcholinesterase in the solubilized state, without affecting the efficiency of extraction of total erythrocyte protein. As with the other nonionic detergents examined, Triton X-100 and octyl beta-D-glucoside were maximally effective in solubilizing acetylcholinesterase activity at concentrations greater than their respective critical micelle concentrations. In the sulfobetaine (N-alkyldimethylaminopropane sulphonate) zwitterionic detergent series, the longer alkyl chain zwittergents Z 316 and Z 314 were more efficient than the shorter chain length members of the series (Z 310 and Z 312). In contrast to the higher chain length compounds, short chain analogs were maximally effective at or below their critical micelle concentrations. After purification by ion-exchange chromatography and affinity chromatography, the enzyme extracted with the various detergents gave sedimentation coefficients between 6.8S and 7.6S, consistent with a dimeric structure. Acetylcholinesterase could also be efficiently released by 0.2 mM EDTA or 0.5 M NaCl from bovine erythrocyte membranes previously depleted of 70-80% of the membrane lipids by butanol. Nonlinear Arrhenius plots of enzyme activity were found whether acetylcholinesterase was solubilized with Tween 20, Lubrol PX, or Triton X-100. The present work confirms that bovine erythrocyte acetylcholinesterase requires detergents to solubilize it from membranes and that its activity depends on the structure of the amphiphiles used to solubilize the enzyme.  相似文献   

5.
Mattress model of lipid-protein interactions in membranes.   总被引:5,自引:16,他引:5       下载免费PDF全文
A thermodynamic model is proposed for describing phase diagrams of mixtures of lipid bilayers and amphiphilic proteins or polypeptides in water solution. The basic geometrical variables of the model are the thickness of the hydrophobic region of the lipid bilayer and the length of the hydrophobic region of the proteins. The model incorporates the elastic properties of the lipid bilayer and the proteins, as well as indirect and direct lipid-protein interactions expressed in terms of the geometrical variables. The concept of mismatch of the hydrophobic regions of the lipids and proteins is an important ingredient of the model. The general phase behavior is calculated using simple real solution theory. The phase behavior turns out to be quite rich and is used to discuss previous experiments on planar aggregations of proteins in phospholipid bilayers and to propose a systematic study of synthetic amphiphilic polypeptides in bilayers of different thicknesses. The model is used to interpret the influence of the lipid-protein interaction on calorimetric measurements and on local orientational order as determined by deuterium nuclear magnetic resonance.  相似文献   

6.
Differences are found between the membrane-bound and soluble acetylcholinesterases of human and bovine erythrocytes when the enzyme interacts with organophosphoric inhibitors in the presence of acetylc choline and galantamine, a reverse inhibitor of acetylcholinesterase. In most cases prevention of inhibition of the soluble enzyme activity necessitates a higher (2-3 times higher) concentration of the protecting agent than protection of the membrane-bound enzyme. Concentrations of acetylcholine and galantamine providing a 50% protection of the enzyme did not practically depend on the strength of the anticholinesterase action of organophosphoric inhibitors.  相似文献   

7.
Selectivity of lipid-protein interactions   总被引:5,自引:0,他引:5  
The spin label ESR and intrinsic fluorescence quenching methods of determining the selectivity of interactions of lipids with integral membrane proteins are summarized. The selectivity patterns of phospholipids, fatty acids, and steroids are reviewed for a variety of integral proteins. Where appropriate, correlations are established with biochemical assays of the effects of specific lipids on enzymatic activity and transport function.  相似文献   

8.
H L Scott  Jr  T J Coe 《Biophysical journal》1983,42(3):219-224
We present a theoretical study of the effect of different types of lipid-protein interactions on the thermodynamic properties of protein-containing lipid bilayers. The basis of this work is a theoretical model for pure lipid bilayer phase transitions developed earlier by Scott. Simple assumptions on the nature of the lipid conformations near a protein strongly affect the predicted properties of the model. Here we consider (a) random protein-lipid contacts, (b) enhanced contact between protein and lipid with a number of gauche bonds, and (c) enhanced contact between protein and all-trans but tilted lipid chains. Comparison of predicted results with experimental data seems to favor point c above but, by itself point c does not work well at larger protein concentrations. The results are discussed in the light of spectroscopic data, lipid-protein (plus annular lipid) miscibility, and interprotein forces.  相似文献   

9.
Multiple forms of acetylcholinesterase from human erythrocytes   总被引:5,自引:3,他引:2       下载免费PDF全文
1. Acetylcholinesterase from human erythrocytes was solubilized with Triton X-100 in strong salt solution and partially purified by (NH(4))(2)SO(4) fractionation. This preparation showed three main bands of enzyme activity after electrophoresis on polyacrylamide gel and incubation with either alpha-naphthyl acetate or acetylthiocholine as enzyme substrate. Two of the multiple forms were completely inhibited by 10mum-eserine and one only partially. Treatment with neuraminidase had no effect on the electrophoretic pattern; therefore sialic acid does not appear to determine or affect the ratios of the acetylcholinesterase multiple forms, unlike those of the serum cholinesterase. 2. Chromatography of the preparation on Sephadex G-200 revealed one major peak of enzyme activity and a suggestion of two minor zones of mol.wt. 546000, 184000 and 93000 (i.e. in the proportion 6:2:1). The main peak was almost completely separated from the Triton X-100 and the overall purification was about 600-fold. Further attempts to purify the enzyme by absorption on calcium phosphate gels were unsuccessful. 3. Electrophoresis of the enzyme preparation on a polyacrylamide gradient for 24h revealed three main bands that corresponded to the three values for molecular weights obtained by column chromatography. After 70h of electrophoresis a further three zones of activity developed making six molecular entities, the molecular weights of which were simple multiples of a monomer, thus resembling the cholinesterase found in serum.  相似文献   

10.
R D Pates  D Marsh 《Biochemistry》1987,26(1):29-39
Lipid-protein interactions in bovine rod outer segment disk membranes have been studied by using a series of eight stearic acid spin-label probes which were labeled at different carbon atom positions in the chain. In randomly oriented membrane dispersions, the electron spin resonance (ESR) spectra of the C-8, C-9, C-10, C-11, C-12, C-13, and C-14 atom positional isomers all apparently consist of two components. One of the components corresponds closely to the spectra obtained from dispersions of the extracted membrane lipids, and the other, which is characterized by a considerably greater degree of motional restriction of the lipid chains, is induced by the presence of the protein. Digital subtraction has been used to separate the two components. The proportion of the motionally restricted lipid component is approximately constant, independent of the position of the spin-label group, and corresponds to 30-40% of the total spin-label spectral intensity. The hyperfine splitting of the outer maxima in the difference spectra of the motionally restricted component decreases, and concomitantly, the line widths increase with increasing temperature but change relatively little with increasing distance of the spin-label group from the polar head-group region. This indicates that the corresponding chain motions of the protein-interacting lipids lie in the slow-motion regime of spin-label ESR spectroscopy (tau R approximately 10(-8) S) and that the mobility of these lipids increases with increasing temperature but does not vary greatly along the length of the chain. The data from the hyperfine splittings also suggest the existence of a polarity gradient immediately adjacent to the protein surface, as observed in the fluid lipid regions of the membrane. The more fluid lipid component is only slightly perturbed relative to the lipids alone (for label positions 5-14, inclusive), indicating the presence of chain motions on the nanosecond time scale, and the spectra also reveal a similar polarity profile in both lipid and membrane environments. ESR spectra have also been obtained as a function of magnetic field orientation with oriented membrane samples. For the C-14 atom positional isomer, the motionally restricted component is observed to have a large hyperfine splitting, with the magnetic field oriented both parallel and perpendicular to the membrane normal. This indicates that the motionally restricted lipid chains have a broad distribution of orientations at this label position.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Fluorescence quenching by iodide ions has been found to be higher in isolated Tangier low density lipoprotein (LDL2) than in isolated normal LDL2. Apolipoprotein (apo) B-100 is the main protein component of these lipoproteins and its tryptophanyl residues (Trp) are known to be the most hydrophobic and to be responsible for protein fluorescence. Trp exposure can thus be calculated; it was 0.50 in Tangier and 0.42 and 0.41 in insulin-dependent diabetics (IDD) and normal controls, respectively. The greater fluorescence quenching of Tangier LDL2 reveals a shallower embedding of Trp which is principally due to a lowered free cholesterol (FC) level in the shell and a smaller lipid core, itself dependent on a drop in cholesterol esters (CE). This is in accordance with the electrophoretic properties of Tangier LDL2 and suggests that Tangier LDL2 may be considered to be modified.  相似文献   

12.
13.
Marsh D 《Biophysical journal》2008,94(10):3996-4013
Lipid chain length modulates the activity of transmembrane proteins by mismatch between the hydrophobic span of the protein and that of the lipid membrane. Relative binding affinities of lipids with different chain lengths are used to estimate the excess free energy of lipid-protein interaction that arises from hydrophobic mismatch. For a wide range of integral proteins and peptides, the energy cost is much less than the elastic penalty of fully stretching or compressing the lipid chains to achieve complete hydrophobic matching. The chain length dependences of the free energies of lipid association are described by a model that combines elastic chain extension with a free energy term that depends linearly on the extent of residual mismatch. The excess free energy densities involved lie in the region of 0.5-2.0 kBT.nm−2. Values of this size could arise from exposure of hydrophobic groups to polar portions of the lipid or protein, but not directly to water, or alternatively from changes in tilt of the transmembrane helices that are energetically comparable to those activating mechanosensitive channels. The influence of hydrophobic mismatch on dimerization of transmembrane helices and their transfer between lipid vesicles, and on shifts in chain-melting transitions of lipid bilayers by incorporated proteins, is analyzed by using the same thermodynamic model. Segmental order parameters confirm that elastic lipid chain distortions are insufficient to compensate fully for the mismatch, but the dependence on chain length with tryptophan-anchored peptides requires that the free energy density of hydrophobic mismatch should increase with increasing extent of mismatch.  相似文献   

14.
15.
Electrophoretic patterns of acetylcholinesterase (acetylcholine hydrolase, EC 3.1.1.7) from rat erythrocyte were studied. The enzyme was solubilized by the following treatments: a) Triton X-100, b) sodium deoxycholate, or c) ultrasonic irradiation. When the erythrocyte membrane was solubilized by Triton X-100 at concentrations higher than 0.3%, by 10 mM sodium deoxycholate, or by ultrasonic irradiation for more than 5 min, a single band of acetylcholinesterase activity appeared in the gel. Two bands of activity were stained in the gel when the membrane was solubilized by Triton X-100 at concentrations between 0.1--0.2%, or by ultrasound for 5 min. Electrophoretic patterns of acetylcholinesterase from rats fed a fat-sufficient diet were similar to those for the enzyme from animals fed a fat-free diet. The recombination of lipids with the enzyme eluted from the gels confirmed the "phenotypic allosteric desensitization phenomenon".  相似文献   

16.
17.
To investigate the physical mechanism by which melittin inhibits Ca-adenosine triphosphatase (ATPase) activity in sarcoplasmic reticulum (SR) membranes, we have used electron paramagnetic resonance spectroscopy to probe the effect of melittin on lipid-protein interactions in SR. Previous studies have shown that melittin substantially restricts the rotational mobility of the Ca-ATPase but only slightly decreases the average lipid hydrocarbon chain fluidity in SR. Therefore, in the present study, we ask whether melittin has a preferential effect on Ca-ATPase boundary lipids, i.e., the annular shell of motionally restricted lipid that surrounds the protein. Paramagnetic derivatives of stearic acid and phosphatidylcholine, spin-labeled at C-14, were incorporated into SR membranes. The electronic paramagnetic resonance spectra of these probes contained two components, corresponding to motionally restricted and motionally fluid lipids, that were analyzed by spectral subtraction. The addition of increasing amounts of melittin, to the level of 10 mol melittin/mol Ca-ATPase, progressively increased the fraction of restricted lipids and increased the hyperfine splitting of both components in the composite spectra, indicating that melittin decreases the hydrocarbon chain rotational mobility for both the fluid and restricted populations of lipids. No further effects were observed above a level of 10 mol melittin/mol Ca-ATPase. In the spectra from control and melittin-containing samples, the fraction of restricted lipids decreased significantly with increasing temperature. The effect of melittin was similar to that of decreased temperature, i.e., each spectrum obtained in the presence of melittin (10:1) was nearly identical to the spectrum obtained without melittin at a temperature approximately 5 degrees C lower. The results suggest that the principal effect of melittin on SR membranes is to induce protein aggregation and this in turn, augmented by direct binding of melittin to the lipid, is responsible for the observed decreases in lipid mobility. Protein aggregation is concluded to be the main cause of inactivation of the Ca-ATPase by melittin, with possible modulation also by the decrease in mobility of the boundary layer lipids.  相似文献   

18.
The detailed molecular structure of the complex formed by the apoprotein from porcine high density lipoprotein and dimyristoly phosphatidylcholine (lecithin) has been investigated by a range of physical techniques. The complex, an oblate ellipsoid with major axis 11.0 nm and minor axis 5.5 nm (see the accompanying paper), is comprised of a section of lecithin bilayer with apoprotein at the surface. The main site of interaction between protein and lipid is in the lipid glycerophosphorylcholine group region; as with native high density lipoprotein the surface of the particle consists of a mosaic of lecithin polar groups and protein. The formation of this mosaic reduces the cooperativity of the lecithin chain motions and changes the curvature of the lipid-water interface, as compared to a bilayer. Otherwise, there are no major changes in lecithin motions indicating that no strong binding of lipid to protein occurs. The interaction involves the intercalation of amphipathic, 60% alpha-helical, apoprotein molecules among the lecithin molecules so that the protein residues at the lipid-water interface. The apoprotein has a high affinity for the lipid-water interface but specific lipid-protein interactions are not involved.  相似文献   

19.
Osteonectin, extracted from foetal porcine calvariae with 0.5 M-EDTA, was purified to homogeneity by using gel filtration and polyanion anion-exchange fast protein liquid chromatography under dissociative conditions without the need of reducing agents. The purified protein migrated with an Mr of 40,300 on SDS/polyacrylamide gels and was similar to bovine osteonectin in both amino acid composition and in its ability to bind to hydroxyapatite in the presence of 4 M-guanidinium hydrochloride (GdmCl). However, unlike the bovine protein, porcine osteonectin did not bind selectively to hydroxyapatite when EDTA tissue extracts were used. In addition, purified porcine osteonectin did not show any apparent affinity for either native or denatured type I collagen, but did bind to serum albumin. Primary sequence analysis revealed an N-terminal alanine residue, with approximately one-half of the subsequent 35 residues identified as small hydrophobic amino acids and one-quarter as acidic amino acids. The only significant difference between the N-terminal sequences of the bovine and porcine proteins was the deletion of the tripeptide Val-Ala-Glu in porcine osteonectin. In contrast with bovine osteonectin, far-u.v.c.d. of porcine osteonectin revealed considerable secondary structure, of which 27% was alpha-helix and 39% was beta-sheet. Cleavage of the molecule with CNBr under non-reducing conditions generated five fragments, of which two major fragments (Mr 27,900 and 12,400) stained blue with Stains All, a reagent that stains sialic-acid-rich proteins/phosphate-containing proteins and/or Ca2+-binding proteins blue while staining other proteins pink. The 12,400-Mr fragment bound 45Ca2+ selectively, indicating a Ca2+-binding site in this part of the molecule. The 27,900-Mr fragment did not bind Ca2+, and since biosynthetic studies with 32PO4(3-) did not show phosphorylation of porcine osteonectin, this fragment is likely to be highly acidic. The incomplete cleavage of the molecule with CNBr and the ability of the molecule to regain its secondary structure after exposure to 7 M-urea are features consistent with the molecule having a compact structure that is stabilized by numerous disulphide bridges. The chemical and binding properties of porcine osteonectin are closely similar to the recently described 'culture shock', SPARC and BM-40 proteins, indicating that these are homologous proteins.  相似文献   

20.
Lipid spin labels have been used to study lipid-protein interactions in bovine and frog rod outer segment disc membranes, in (Na+, K+)-ATPase membranes from shark rectal gland, and in yeast cytochrome oxidase-dimyristoyl phosphatidylcholine complexes. These systems all display a two component ESR spectrum from 14-doxyl lipid spin-labels. One component corresponds to the normal fluid bilayer lipids. The second component has a greater degree of motional restriction and arises from lipids interacting with the protein. For the phosphatidylcholine spin label there are effectively 55 +/- 5 lipids/200,000-dalton cytochrome oxidase, 58 +/- 4 mol lipid/265,000 dalton (Na+, K+)-ATPase, and 24 +/- 3 and 22 +/- 2 mol lipid/37,000 dalton rhodopsin for the bovine and frog preparations, respectively. These values correlate roughly with the intramembrane protein perimeter and scale with the square root of the molecular weight of the protein. For cytochrome oxidase the motionally restricted component bears a fixed stoichiometry to the protein at high lipid:protein ratios, and is reduced at low lipid:protein ratios to an extent which can be quantitatively accounted for by random protein-protein contacts. Experiments with spin labels of different headgroups indicate a marked selectivity of cytochrome oxidase and the (Na+, K+)-ATPase for stearic acid and for cardiolipin, relative to phosphatidylcholine. The motionally restricted component from the cardiolipin spin label is 80% greater than from the phosphatidylcholine spin label for cytochrome oxidase (at lipid:protein = 90.1), and 160% greater for the (Na+, K+)-ATPase. The corresponding increases for the stearic acid label are 20% for cytochrome oxidase and 40% for (Na+, K+)-ATPase. The effective association constant for cardiolipin is approximately 4.5 times greater than for phosphatidylcholine, and that for stearic acid is 1.5 times greater, in both systems. Almost no specificity is found in the interaction of spin-labeled lipids (including cardiolipin) with rhodopsin in the rod outer segment disc membrane. The linewidths of the fluid spin-label component in bovine rod outer segment membranes are consistently higher than those in bilayers of the extracted membrane lipids and provide valuable information on the rate of exchange between the two lipid components, which is suggested to be in the range of 10(6)-10(7) s-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号