首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jung ID  Lee J  Yun SY  Park CG  Choi WS  Lee HW  Choi OH  Han JW  Lee HY 《FEBS letters》2002,532(3):351-356
Autotaxin (ATX) is a strong motogen that can increase invasiveness and angiogenesis. In the present study, we investigated the signal transduction mechanism of ATX-induced tumor cell motility. Unlike N19RhoA expressing cells, the cells expressing N17Cdc42 or N17Rac1 showed reduced motility against ATX. ATX activated Cdc42 and Rac1 and increased complex formation between these small G proteins and p21-activated kinase (PAK). Furthermore, ATX phosphorylated focal adhesion kinase (FAK) that was not shown in cells expressing dominant negative mutants of Cdc42 or Rac1. Collectively, these data strongly indicate that Cdc42 and Rac1 are essential for ATX-induced tumor cell motility in A2058 melanoma cells, and that PAK and FAK might be also involved in the process.  相似文献   

2.
RhoG is a member of the Rho family of small GTPases and shares high sequence identity with Rac1 and Cdc42. Previous studies suggested that RhoG mediates its effects through activation of Rac1 and Cdc42. To further understand the mechanism of RhoG signaling, we studied its potential activation pathways, downstream signaling properties, and functional relationship to Rac1 and Cdc42 in vivo. First, we determined that RhoG was regulated by guanine nucleotide exchange factors that also activate Rac and/or Cdc42. Vav2 (which activates RhoA, Rac1, and Cdc42) and to a lesser degree Dbs (which activates RhoA and Cdc42) activated RhoG in vitro. Thus, RhoG may be activated concurrently with Rac1 and Cdc42. Second, some effectors of Rac/Cdc42 (IQGAP2, MLK-3, PLD1), but not others (e.g. PAKs, POSH, WASP, Par-6, IRSp53), interacted with RhoG in a GTP-dependent manner. Third, consistent with this differential interaction with effectors, activated RhoG stimulated some (JNK and Akt) but not other (SRF and NF-kappaB) downstream signaling targets of activated Rac1 and Cdc42. Finally, transient transduction of a tat-tagged Rac1(17N) dominant-negative fusion protein inhibited the induction of lamellipodia by the Rac-specific activator, Tiam1, but not by activated RhoG. Together, these data argue that RhoG function is mediated by signals independent of Rac1 and Cdc42 activation and instead by direct utilization of a subset of common effectors.  相似文献   

3.
4.
5.
Although it is well accepted that the constituents of the cellular microenvironment modulate a myriad of cellular processes, including cell morphology, cytoskeletal dynamics and uptake pathways, the underlying mechanism of how these pathways influence non-viral gene transfer have not been studied. Transgene expression is increased on fibronectin (Fn) coated surfaces as a consequence of increased proliferation, cell spreading and active engagement of clathrin endocytosis pathway. RhoGTPases mediate the crosstalk between the cell and Fn, and regulate cellular processes involving filamentous actin, in-response to cellular interaction with Fn. Here the role of RhoGTPases specifically Rho, Rac and Cdc42 in modulation of non-viral gene transfer in mouse mesenchymal stem (mMSCs) plated in a fibronectin microenvironment was studied. More than 90% decrease in transgene expression was observed after inactivation of RhoGTPases using difficile toxin B (TcdB) and C3 transferase. Expression of dominant negative RhoA (RhoAT19N), Rac1(Rac1T17N) and Cdc42 (Cdc42T17N) also significantly reduced polyplex uptake and transgene expression. Interactions of cells with Fn lead to activation of RhoGTPases. However, further activation of RhoA, Rac1 and Cdc42 by expression of constitutively active genes (RhoAQ63L, Rac1Q61L and Cdc42Q61L) did not further enhance transgene expression in mMSCs, when plated on Fn. In contrast, activation of RhoA, Rac1 and Cdc42 by expression of constitutively active genes for cells plated on collagen I, which by itself did not increase RhoGTPase activation, resulted in enhanced transgene expression. Our study shows that RhoGTPases regulate internalization and effective intracellular processing of polyplexes that results in efficient gene transfer.  相似文献   

6.
The Rho GTPases Rac1 and Cdc42 regulate a variety of cellular functions by signaling to different signal pathways. It is believed that the presence of a specific effector at the location of GTPase activation determines the route of downstream signaling. We previously reported about EGF-induced Ser-71 phosphorylation of Rac1/Cdc42. By using the phosphomimetic S71E-mutants of Rac1 and Cdc42 we investigated the impact of Ser-71 phosphorylation on binding to selected effector proteins. Binding of the constitutively active (Q61L) variants of Rac1 and Cdc42 to their specific interaction partners Sra-1 and N-WASP, respectively, as well as to their common effector protein PAK was abrogated when Ser-71 was exchanged to glutamate as phosphomimetic substitution. Interaction with their common effector proteins IQGAP1/2/3 or MRCK alpha was, however, hardly affected. This ambivalent behaviour was obvious in functional assays. In contrast to Rac1 Q61L, phosphomimetic Rac1 Q61L/S71E was not able to induce increased membrane ruffling. Instead, Rac1 Q61L/S71E allowed filopodia formation, which is in accordance with abrogation of the dominant Sra-1/Wave signalling pathway. In addition, in contrast to Rac1 transfected cells Rac1 S71E failed to activate PAK1/2. On the other hand, Rac1 Q61L/S71E was as effective in activation of NF-kappaB as Rac1 Q61L, illustrating positive signal transduction of phosphorylated Rac1. Together, these data suggest that phosphorylation of Rac1 and Cdc42 at serine-71 represents a reversible mechanism to shift specificity of GTPase/effector coupling, and to preferentially address selected downstream pathways.  相似文献   

7.
8.
Rho family GTPases have been assigned important roles in the formation of actin-based morphologies in nonneuronal cells. Here we show that microinjection of Cdc42Hs and Rac1 promoted formation of filopodia and lamellipodia in N1E-115 neuroblastoma growth cones and along neurites. These actin-containing structures were also induced by injection of Clostridium botulinum C3 exoenzyme, which abolishes RhoA-mediated functions such as neurite retraction. The C3 response was inhibited by coinjection with the dominant negative mutant Cdc42Hs(T17N), while the Cdc42Hs response could be competed by coinjection with RhoA. We also demonstrate that the neurotransmitter acetylcholine (ACh) can induce filopodia and lamellipodia on neuroblastoma growth cones via muscarinic ACh receptor activation, but only when applied in a concentration gradient. ACh-induced formation of filopodia and lamellipodia was inhibited by preinjection with the dominant negative mutants Cdc42Hs(T17N) and Rac1(T17N), respectively. Lysophosphatidic acid (LPA)-induced neurite retraction, which is mediated by RhoA, was inhibited by ACh, while C3 exoenzyme-mediated neurite outgrowth was inhibited by injection with Cdc42Hs(T17N) or Rac1(T17N). Together these results suggest that there is competition between the ACh- and LPA-induced morphological pathways mediated by Cdc42Hs and/or Rac1 and by RhoA, leading to either neurite development or collapse.  相似文献   

9.
Involvement of Cdc42 signaling in apoA-I-induced cholesterol efflux   总被引:2,自引:0,他引:2  
Cholesterol efflux, an important mechanism by which high density lipoproteins (HDL) protect against atherosclerosis, is initiated by docking of apolipoprotein A-I (apoA-I), a major HDL protein, to specific binding sites followed by activation of ATP-binding cassette transporter A1 (ABCA1) and translocation of cholesterol from intracellular compartments to the exofacial monolayer of the plasma membrane where it is accessible to HDL. In this report, we investigated potential signal transduction pathways that may link apoA-I binding to cholesterol translocation to the plasma membrane and cholesterol efflux. By using pull-down assays we found that apoA-I substantially increased the amount of activated Cdc42, Rac1, and Rho in human fibroblasts. Moreover, apoA-I induced actin polymerization, which is known to be controlled by Rho family G proteins. Inhibition of Cdc42 and Rac1 with Clostridium difficile toxin B inhibited apoA-I-induced cholesterol efflux, whereas inhibition of Rho with Clostridium botulinum C3-exoenzyme exerted opposite effects. Adenoviral expression of a Cdc42(T17N) dominant negative mutant substantially reduced apoA-I-induced cholesterol efflux, whereas dominant negative Rac1(T17N) had no effect. We further found that two downstream effectors of Cdc42/Rac1 signaling, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK), are activated by apoA-I. Pharmacological inhibition of JNK but not p38 MAPK decreased apoA-I-induced cholesterol efflux, whereas anisomycin and hydrogen peroxide, two direct JNK activators, could partially substitute for apoA-I in its ability to induce cholesterol efflux. These results for the first time demonstrate activation of Rho family G proteins and stress kinases by apoA-I and implicate the involvement of Cdc42 and JNK in the apoA-I-induced cholesterol efflux.  相似文献   

10.
Activation of Rac1, a member of the Rho family of GTPases, is associated with multiple cellular responses, including membrane ruffling and focal complex formation. The mechanisms by which Rac1 is coupled to these functional responses are not well understood. It was recently shown that ARF6, a GTPase implicated in cytoskeletal alterations and a membrane recycling pathway, is required for Rac1-dependent phagocytosis in macrophages (Q. Zhang et al., J. Biol. Chem. 273:19977-19981, 1998). To determine whether ARF6 is required for Rac1-dependent cytoskeletal responses in macrophages, we expressed wild-type (WT) or guanine nucleotide binding-deficient alleles (T27N) of ARF6 in macrophages coexpressing activated alleles of Rac1 (Q61L) or Cdc42 (Q61L) or stimulated with colony-stimulating factor 1 (CSF-1). Expression of ARF6 T27N but not ARF6 WT inhibited ruffles mediated by Rac1 Q61L or CSF-1. In contrast, expression of ARF6 T27N did not inhibit Rac1 Q61L-mediated focal complex formation and did not impair Cdc42 Q61L-mediated filopodial formation. Cryoimmunogold electron microscopy demonstrated the presence of ARF6 in membrane ruffles induced by either CSF-1 or Rac1 Q61L. Addition of CSF-1 to macrophages led to the redistribution of ARF6 from the interior of the cell to the plasma membrane, suggesting that this growth factor triggers ARF6 activation. Direct targeting of Rac1 to the plasma membrane did not bypass the blockade in ruffling induced by ARF6 T27N, indicating that ARF6 regulates a pathway leading to membrane ruffling that occurs after the activation and membrane association of Rac. These data demonstrate that intact ARF6 function is required for coupling activated Rac to one of several effector pathways and suggest that a principal function of ARF6 is to coordinate Rac activation with plasma membrane-based protrusive events.  相似文献   

11.
Salmonella typhimurium colonization of the intestinal epithelium initiates biochemical cross-talk between pathogen and host that results in the secretion of chemokines, such as interleukin (IL)-8, that direct neutrophil migration to the site of infection. In nonpolarized cells, Rac1 and Cdc42 have been shown to regulate both bacterial invasion and signaling events leading to nuclear responses and IL-8 secretion. However, because the underlying actin cytoskeleton and the associated signaling machinery are distributed much differently in polarized epithelial cells, we used polarized Madin-Darby canine kidney monolayers to investigate the role of Rac1 and Cdc42 in S. typhimurium-induced pro-inflammatory responses in the more physiologically relevant polarized state. In Madin-Darby canine kidney monolayers expressing dominant-negative Rac1 or Cdc42, both Salmonella- and tumor necrosis factor alpha-induced activation of NFkappaB and mitogen-activated protein kinase signaling cascades proceeded normally, but IL-8 secretion was inhibited. We found that Rac1 and Cdc42 were not involved in early pro-inflammatory signaling events, as in nonpolarized cells, but rather regulated the basolateral exocytosis and secretion of IL-8. In contrast, dominant-negative Rac1 inhibited apical actin pedestal formation, indicating that pedestal formation and nuclear signaling for pro-inflammatory activation are not linked. These findings indicate that there are significant differences in the requirements of pathogen-induced host cell signaling pathways in polarized and nonpolarized cells.  相似文献   

12.
13.
The small G proteins Cdc42, Rac1, and Rac2 regulate the rearrangements of actin and membrane necessary for Fcgamma receptor-mediated phagocytosis by macrophages. Activated, GTP-bound Cdc42, Rac1, and Rac2 bind to the p21-binding domain (PBD) of PAK1, and this interaction provided a basis for microscopic methods to localize activation of these G proteins inside cells. Fluorescence resonance energy transfer-based stoichiometry of fluorescent chimeras of actin, PBD, Cdc42, Rac1, and Rac2 was used to quantify G protein activation relative to actin movements during phagocytosis of IgG-opsonized erythrocytes. The activation dynamics of endogenous G proteins, localized using yellow fluorescent protein-labeled PBD, was restricted to phagocytic cups, with a prominent spike of activation over an actin-poor region at the base of the cup. Refinements of fluorescence resonance energy transfer stoichiometry allowed calculation of the fractions of activated GTPases in forming phagosomes. Cdc42 activation was restricted to the leading margin of the cell, whereas Rac1 was active throughout the phagocytic cup. During phagosome closure, activation of Rac1 and Rac2 increased uniformly and transiently in the actin-poor region of phagosomal membrane. These distinct roles for Cdc42, Rac1, and Rac2 in the component activities of phagocytosis indicate mechanisms by which their differential regulation coordinates rearrangements of actin and membranes.  相似文献   

14.
15.
16.
n-Chimaerin is a GTPase-activating protein (GAP) mainly for Rac1 and less so for Cdc42Hs in vitro. The GAP activity of n-chimaerin is regulated by phospholipids and phorbol esters. Microinjection of Rac1 and Cdc42Hs into mammalian cells induces formation of the actin-based structures lamellipodia and filopodia, respectively, with the former being prevented by coinjection of the chimaerin GAP domain. Strikingly, microinjection of the full-length n-chimaerin into fibroblasts and neuroblastoma cells induces the simultaneous formation of lamellipodia and filopodia. These structures undergo cycles of dissolution and formation, resembling natural morphological events occurring at the leading edge of fibroblasts and neuronal growth cones. The effects of n-chimaerin on formation of lamellipodia and filopodia were inhibited by dominant negative Rac1(T17N) and Cdc42Hs(T17N), respectively. n-Chimaerin's effects were also inhibited by coinjection with Rho GDP dissociation inhibitor or by treatment with phorbol ester. A mutant n-chimaerin with no GAP activity and impaired p21 binding was ineffective in inducing morphological changes, while a mutant lacking GAP activity alone was effective. Microinjected n-chimaerin colocalized in situ with F-actin. Taken together, these results suggest that n-chimaerin acts synergistically with Rac1 and Cdc42Hs to induce actin-based morphological changes and that this action involves Rac1 and Cdc42Hs binding but not GAP activity. Thus, GAPs may have morphological functions in addition to downregulation of GTPases.  相似文献   

17.
A Role for Cdc42 in Macrophage Chemotaxis   总被引:26,自引:0,他引:26       下载免费PDF全文
Three members of the Rho family, Cdc42, Rac, and Rho are known to regulate the organization of actin-based cytoskeletal structures. In Bac1.2F5 macrophages, we have shown that Rho regulates cell contraction, whereas Rac and Cdc42 regulate the formation of lamellipodia and filopodia, respectively. We have now tested the roles of Cdc42, Rac, and Rho in colony stimulating factor-1 (CSF-1)–induced macrophage migration and chemotaxis using the Dunn chemotaxis chamber. Microinjection of constitutively activated RhoA, Rac1, or Cdc42 inhibited cell migration, presumably because the cells were unable to polarize significantly in response to CSF-1. Both Rho and Rac were required for CSF-1–induced migration, since migration speed was reduced to background levels in cells injected with C3 transferase, an inhibitor of Rho, or with the dominant-negative Rac mutant, N17Rac1. In contrast, cells injected with the dominant-negative Cdc42 mutant, N17Cdc42, were able to migrate but did not polarize in the direction of the gradient, and chemotaxis towards CSF-1 was abolished.

We conclude that Rho and Rac are required for the process of cell migration, whereas Cdc42 is required for cells to respond to a gradient of CSF-1 but is not essential for cell locomotion.

  相似文献   

18.
The Rho family GTPases Rac, Rho and Cdc42 are critical in regulating the actin-based cytoskeleton, cell migration, growth, survival and gene expression. These GTPases are activated by guanine nucleotide-exchange factors (GEFs). A biochemical search for Cdc42 activators led to the cloning of zizimin1, a new protein whose overexpression induces Cdc42 activation. Sequence comparison combined with mutational analysis identified a new domain, which we named CZH2, that mediates direct interaction with Cdc42. CZH2-containing proteins constitute a new superfamily that includes the so-called 'CDM' proteins that bind to and activate Rac. Together, the results suggest that CZH2 is a new GEF domain for the Rho family of proteins.  相似文献   

19.
The generation, maturation, and function of dendritic cells (DC) have been shown to be markedly compromised in the tumor microenvironment in animals and humans. However, the molecular mechanisms and intracellular pathways involved in the regulation of the DC system in cancer are not yet fully understood. Recently, we have reported on the role of the small Rho GTPase family members Cdc42, Rac1, and RhoA in regulating DC adherence, motility, and Ag presentation. To investigate involvement of small Rho GTPases in dysregulation of DC function by tumors, we next evaluated how Cdc42, Rac1, and RhoA regulated endocytic activity of DC in the tumor microenvironment. We revealed a decreased uptake of dextran 40 and polystyrene beads by DC generated in the presence of different tumor cell lines, including RM1 prostate, MC38 colon, 3LL lung, and B7E3 oral squamous cell carcinomas in vitro and by DC prepared from tumor-bearing mice ex vivo. Impaired endocytic activity of DC cocultured with tumor cells was associated with decreased levels of active Cdc42 and Rac1. Transduction of DC with the dominant negative Cdc42 and Rac1 genes also led to reduced phagocytosis and receptor-mediated endocytosis. Furthermore, transduction of DC with the constitutively active Cdc42 and Rac1 genes restored endocytic activity of DC that was inhibited by the tumors. Thus, our results suggest that tumor-induced dysregulation of endocytic activity of DC is mediated by reduced activity of several members of the small Rho GTPase family, which might serve as new targets for improving the efficacy of DC vaccines.  相似文献   

20.
Mycoplasma fermentans lipoproteins (LAMPf) are capable of activating macrophages and inducing the secretion of proinflammatory cytokines. We have recently reported that mitogen-activated protein kinase (MAPK) pathways and NF-kappaB and activated protein 1 (AP-1) play a crucial role in the activation induced by this bacterial compound. To further elucidate the mechanisms by which LAMPf mediate the activation of macrophages, we assessed the effects of inhibiting small G proteins Rac, Cdc42, and Rho. The Rho-specific inhibitor C3 enzyme completely abolished the secretion of tumor necrosis factor alpha by macrophages stimulated with LAMPf and also inhibited the activation of extracellular signal-regulated kinase (ERK), c-Jun NH(2)-terminal kinase (JNK), and p38 kinase. In addition, we have shown that LAMPf stimulate Cdc42 and that inhibition of Cdc42 or Rac by dominant negative mutants abrogates LAMPf-mediated activation of JNK and transactivation of NF-kappaB and AP-1 in the murine macrophage cell line RAW 264.7. These results indicate that small G proteins Rho, Cdc42, and Rac are involved in the cascade of events leading to the macrophage activation by mycoplasma lipoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号