首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recognition and lysis of target cells by cytotoxic T lymphocytes   总被引:3,自引:0,他引:3  
A single cytotoxic T lymphocyte (CTL) is capable of performing the two most fundamental functions of an immune response, recognition and elimination of foreign antigens. It is now clear that in a CTL these two functions are linked via the antigen-specific, heterodimeric receptor. We review here some experimental approaches that justify this conclusion and provide the means for further examination of the mechanisms by which CTLs lyse their target cells. When antireceptor antibodies serving as antigen substitutes are attached to various cells, they trigger the lytic activity of particular CTLs, which results in lysis of the antibody-modified cell. In the process, a novel serine esterase, which is located within cytolytic granules of the CTL, is released. The presence of this enzyme and a complement-like protein, perforin, in granules of a CTL has led to the suggestion that CTLs and complement have similar cytolytic mechanisms. However, the resistance of some CTLs to lysis by other CTLs, but not to lysis by antibody-activated complement, suggests fundamental differences between cytolytic mechanisms of CTLs and complement.  相似文献   

2.
Protein kinase C required for cytotoxic T lymphocyte triggering   总被引:9,自引:0,他引:9  
The role of protein kinase C (PK-C) in triggering the lytic response of cytotoxic T lymphocytes (CTL) has been examined. Both target cell lysis and the release of CTL-associated serine esterase (SE), a marker for cytotoxic granules, were used as indicators of the CTL lytic response. We found triggering of the CTL lytic response occurred when both a PK-C activator, phorbol 12-myristate 13-acetate (PMA), and a calcium ionophore, ionomycin, were added to CTL. The previously described inactivation of the CTL lytic response by long term treatment (24 hr) with PMA was also investigated. CTL cultured with PMA for 24 hr were unable to mediate target cell lysis or release SE; this inability to respond correlated with an absence of PK-C activity. Incubation of the PMA-treated CTL in the absence of PMA for an additional 24 hr resulted in recovery of PK-C activity, SE release, and the lytic response. These experiments strongly suggest that PK-C is involved with the transmembrane signaling required for SE release which is a necessary event in CTL-mediated target cell lysis.  相似文献   

3.
By immunofluorescence observations with cell couples of cloned murine cytotoxic T lymphocytes (CTL) and target cells, evidence is presented for a rapid reorientation of the microtubule-organizing center (MTOC) and the Golgi apparatus (GA) in the effector cell (but not in the target cell) toward the contact area with the target. The reorientation of the MTOC/GA and the cytotoxic activity of the CTL were inhibited reversibly by nocodazole, a microtubule-disrupting agent. In lectin-formed cell couples of CTL and neuraminidase-treated target cells, the MTOC in essentially all of the CTL was oriented toward the effector-target contact area of a lysable target cell, but was left randomly oriented with a nonlysable target cell. A similar random orientation of the effector-MTOC was also observed in cell couples of cloned natural killer cells and nonlysable targets. These findings indicate that the repositioning of the MTOC and the GA, which is shared by CTL and natural killer cells, is an essential and early event in the onset of the cytolytic mechanism. It is suggested that this reorientation serves the purpose of directing to the bound target cell secretory vesicles derived from the GA that contain cytotoxic substances.  相似文献   

4.
The mechanism of lysis by in vivo-induced cytotoxic T lymphocytes (CTL) was examined with virus-specific CTL from mice infected with lymphocytic choriomeningitis virus (LCMV). LCMV-induced T cells were shown to have greater than 10 times the serine esterase activity of T cells from normal mice, and high levels of serine esterase were located in the LCMV-induced CD8+ cell population. Serine esterase was also induced in purified T-cell preparations isolated from mice infected with other viruses (mouse hepatitis, Pichinde, and vaccinia). In contrast, the interferon inducer poly(I.C) only marginally enhanced serine esterase in T cells. Serine esterase activity was released from the LCMV-induced T cells upon incubation with syngeneic but not allogeneic LCMV-infected target cells. Both cytotoxicity and the release of serine esterase were calcium dependent. Serine esterase released from disrupted LCMV-induced T cells was in the form of the fast-sedimenting particles, suggesting its inclusion in granules. Competitive substrates for serine esterase blocked killing by LCMV-specific CTL, but serine esterase-containing granules isolated from LCMV-induced CTL, in contrast to granules isolated from a rat natural killer cell tumor line, did not display detectable hemolytic activity. Fragmentation of target cell DNA was observed during the lytic process mediated by LCMV-specific CTL, and the release of the DNA label [125I]iododeoxyuridine from target cells and the accompanying fragmentation of DNA also were calcium dependent. These data support the hypothesis that the mechanism of killing by in vivo-induced T cells involves a calcium-dependent secretion of serine esterase-containing granules and a target cell death by a process involving nuclear degradation and DNA fragmentation.  相似文献   

5.
Cell-mediated cytotoxicity can be inhibited by the replacement of chloride with ions that are incapable of passing through chloride channels or by the presence of stilbene disulfonate derivatives known to interfere with chloride flux. We show that the stilbene disulfonate (4,4-diisothiocyano-2,2'-disulfonic acid stilbene (DIDS) inhibits lysis of YAC-1 targets by the cloned cell line NKB61A2. Inhibition of lysis occurs on the level of the effector cell inasmuch as preincubation of effectors but not of targets interferes with subsequent lysis. Moreover, inhibition of chloride flux in the target does not interfere with target cell lysis by cytotoxic granules isolated from killer cells. Target cell binding takes place in the presence of DIDS or absence of external chloride, suggesting that events that follow target cell binding require chloride flux. We show that reorientation of the Golgi apparatus, which occurs subsequent to target cell binding in the effector cell, occurs under conditions that interfere with chloride flux. It is therefore suggested that events in the effector cell taking place subsequent to the Golgi apparatus reorientation reaction are inhibited and that delivery of the lethal hit is a stimulus-induced secretory event that requires transmembrane chloride flux. Delivery of the lethal hit is shown to be independent of the release of N alpha-benzyloxycarbonyl-L-lysine thiobenzyl ester (BLT) serine esterase, suggesting that cytolytic components and BLT serine esterase are likely packaged in different vesicles.  相似文献   

6.
The role of Ca2+ in activation of mature cytotoxic T lymphocytes for lysis   总被引:1,自引:0,他引:1  
We carried out a detailed analysis of the requirement for Ca2+ in the lysis of target cells by cloned cytotoxic T lymphocytes (CTL). In direct, antigen-specific lysis we always observed an influx of Ca2+ into the CTL concomitant with target cell binding. However, we never observed an increase in CTL Ca2+ content during lectin-mediated lysis, or nonspecific lysis by phorbol myristate acetate-induced CTL. We found that in all three types of lysis (direct, lectin-mediated lysis, C or phorbol myristate acetate-induced) the requirement for Ca2+ in lysis was dictated by the target cell used; the same CTL can kill one target cell in the absence of detectable Ca2+, and absolutely require Ca2+ for the lysis of another target cell. Target cell killing, when it occurred in the absence of Ca2+, was accompanied by microtubule organizing center reorientation in the CTL, showing that this function is not uniformly Ca2+ dependent. These results provide further evidence that Ca2+ is not always required for activation of the lytic pathway in CTL, although Ca2+ may be absolutely required for other CTL functions such as interleukin production or expression of the interleukin 2 receptor.  相似文献   

7.
SNARE proteins are essential fusion mediators for many intracellular trafficking events. Here, we investigate the role of Syntaxin7 (Stx7) in the release of lytic granules from cytotoxic T lymphocytes (CTLs). We show that Stx7 is expressed in CTLs and is preferentially localized to the region of lytic granule release, the immunological synapse (IS). Interference of Stx7 function by expression of a dominant-negative Stx7 construct or by small interfering RNA leads to a dramatic reduction of CTL-mediated killing of target cells. Real-time visualization of individual lytic granules at the IS by evanescent wave microscopy reveals that lytic granules in Stx7-deprived CTLs not only fail to fuse with the plasma membrane but even fail to accumulate at the IS. Surprisingly, the accumulation defect is not caused by an overall reduction in lytic granule number, but by a defect in the trafficking of T cell receptors (TCRs) through endosomes. Subsequent high-resolution nanoscopy shows that Stx7 colocalizes with Rab7 on late endosomes. We conclude from these data that the accumulation of recycling TCRs at the IS is a SNARE-dependent process and that Stx7-mediated processing of recycling TCRs through endosomes is a prerequisite for the cytolytic function of CTLs.  相似文献   

8.
TCR-mediated granule exocytosis, as measured by the release of serine esterase activity, has been implicated in the lytic process of Ag-specific CTL. Exocytosis appears to be the mechanism of release of other lysis-relevant molecules including cytotoxic lymphokines and proteins that have the capacity to induce membrane lesions as measured by the hemolysis of non-nucleated SRBC. In the studies presented here, we assessed the contribution of exocytosis and lymphokine production in CTL lysis of nucleated and non-nucleated target cells by using a panel of murine CTL clones. Ag-mediated activation of cytolysis, lymphokine production, and exocytosis could be mimicked by mAb against the TCR/CD3 complex, or by stimulation with the combination of PMA + calcium ionophore, which appear to bypass the TCR (neither PMA nor calcium ionophore alone induced these functions efficiently in our CD8+ CTL clones). Although lysis, IFN-gamma production and exocytosis of N-alpha-benzyloxycarbonyl-L-lysin esterase (BLTE) activity were induced by either stimulus, we were able to identify distinct activation requirements for each of these functions. We found that lymphokine production, exocytosis, and cytolysis could be selectively inhibited. Cycloheximide inhibited IFN-gamma production, but did not inhibit exocytosis of BLTE activity or cytolysis. In addition we showed that cyclosporine A (CsA) profoundly inhibited IFN-gamma production as well as exocytosis induced by stimulation through the Ag receptor or by PMA + calcium ionophore. In contrast, CsA had little or no effect on lysis of nucleated target cells that bear the relevant Ag. These findings indicate that our CTL clones can lyse target cells by a mechanism independent of exocytosis or (de novo) lymphokine production. To directly assess the capacity of our CTL clones to lyse target cells without inducing nuclear damage we developed a system of coating non-nucleated SRBC with anti-CD3 mAb for use as stimuli and as targets for lysis. We found that our cloned CTL were indeed activated to produce IFN-gamma by SRBC that were coated with anti-CD3 mAb, and, furthermore, they were able to lyse the SRBC in a short term cytolytic assay. Thus our CD8+ CTL are capable of lysing certain target cells by a mechanism independent of DNA degradation, presumably by inducing a membrane lesion. In addition, CsA did inhibit lysis of the non-nucleated SRBC targets as well as exocytosis of BLTE activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Cells from clones of anti-hapten cytotoxic T lymphocytes (CTL) can act as both effector cells and, when treated with the specific hapten, as target cells. Individual clones can kill haptenated cells only from other clones that are less efficient killers. Clones specific for both fluorescein and trinitrophenol could be ordered in a single hierarchy in which resistance to lysis correlated with lytic efficiency. When the killing efficiency was reduced with phorbol myristate acetate (PMA) or the colchicine analogue, Colcemid, the degree of resistance to lysis was also reduced. The use of PMA-treated fluoresceinated targets greatly enhanced intraclonal killing and similarly lead to a repositioning of clones within the hierarchy of normal cells. By the haptenation of appropriate clones, efficient CTL could kill cells from other clones in a direction apparently opposite to recognition. The results demonstrate that effects other than antigen recognition of the target cell may result in variations in the nature of T cell immune responses.  相似文献   

10.
Exocytosis of cytolysin-containing granules from cytotoxic T lymphocytes (CTL) was studied with the use of granule enzyme (BLT esterase) as a convenient biochemical marker. Using cloned CTL, we demonstrate here that BLT esterase secretion into the supernatant is specifically triggered by antigen-bearing target cells and that this secretion is inhibited by soluble monoclonal antibodies against the antigen-specific T cell receptor (TcR). Immobilized anti-receptor antibodies induced efficient enzyme secretion in the absence of target cells, thus implying a direct involvement of TcR complex in triggering exocytosis of granules. These results support the role of the granule exocytosis in CTL functions and provide a quantitative and direct assay of a rapid CTL functional response to antigenic stimulation.  相似文献   

11.
Specific binding (conjugation) of cytotoxic T lymphocytes (CTL) to target cells (TC) is the first step in a multistage process ultimately resulting in dissolution of the TC and recycling of the CTL. We examined the position of the microtubule organizing center (MTOC) of immune CTL bound to specific TC. Immunofluorescence labeling of freshly prepared CTL-TC conjugates with tubulin antibodies indicated that the MTOC in essentially all conjugated CTL but not in the conjugated TC were oriented towards the intercellular contact site. This finding was corroborated by electron microscopy examination of CTL-TC conjugates fixed either immediately after conjugation or during the lytic process. Antibody-induced caps of membrane antigens of CTL such as H-2 and Thy 1, did not show a similar relationship to the MTOC. Incubation of CTL- TC conjugates, 10-15 min at room temperature, resulted in an apparent deterioration of the microtubular system of conjugated CTL. It is proposed that the CTL plasma membrane proximal to the MTOC is particularly active in forming stable intercellular contacts, resulting in CTL-TC conjugation, and that subsequent modulation of the microtubular system of the CTL may be related to the cytolytic response and to detachment of the effector cell.  相似文献   

12.
Percoll gradient fractions of homogenates of murine cloned cytotoxic T lymphocytes (CTL) were analyzed for the trypsin-like enzyme alpha-N-benzyloxy-carbonyl-L-lysinethiobenzyl ester (BLT) esterase recently described in CTL homogenates. Enzymatic activity was found in three areas of the gradient: the dense cytolysin containing granules; a light granule fraction; and a variable amount in the soluble fraction at the top of the gradient. Gel filtration columns showed a major peak of BLT esterase activity eluted at the position of a 60-kDa protein, and an additional, minor BLT esterase peak eluting at about 27 kDa. The separated enzymes were both significantly inhibited by the serine protease inhibitors diisopropylfluorophosphate and phenylmethyl sulfonyl fluoride (PMSF), indicating they are both serine proteases, but showed different patterns of inhibition by a series of inhibitors, suggesting the larger enzyme is not a simple dimer of the smaller. pH activity profiles of both CTL BLT esterases showed an optimum at about pH 8. PMSF inactivation of BLT esterase in detergent extracts of CTL diminished sharply as the pH was dropped below 7. Agents which raise the pH of acidic intracellular compartments were found to markedly enhance the PMSF inactivation of BLT esterase in intact CTL, showing that the granules have a low internal pH. Similarly, [3H]diisopropylfluorophosphate labeling of intact CTL gave four protein bands on non-reduced gels, of which two were labeled threefold more effectively in the presence of chloroquine. In parallel studies of inactivation of CTL lytic activity, PMSF pretreatment caused a 50% reduction of the lytic activity under conditions where greater than 90% of the BLT esterase activity was inactivated. Addition of agents raising the intragranular pH dramatically enhanced the BLT esterase inactivation but did not concomitantly reduce CTL lytic activity. These results indicate that inactivation of lytic function by PMSF is unlikely to be due to its reaction with protease in acidic granules, and suggest that the activity of these enzymes may not be required for cytotoxicity.  相似文献   

13.
The original polarity of lysis experiments suggested that CTL are themselves sensitive to whatever mechanism it is that CTL use to lyse their targets. This concept has placed certain limitations on possible mechanisms of lysis by CTL. Recently, we found in studies with cloned CTL as targets that cloned CTL are in fact highly resistant to lysis by other CTL, as well as to their cytotoxic granule proteins. We show here that although cloned CTL are extremely resistant to lysis by primary and cloned CTL, they are readily inactivated functionally by all primary CTL and by at least one CTL clone. Moreover, cloned CTL are also functionally inactivated by cytotoxic granule proteins. The activation of CTL, which we call inhibitin, is Ca2+ insensitive and distinct from hemolytic activity, and is, thus, unlikely to be perforin. These experiments suggest a possible alternative interpretation of the original polarity of lysis experiments.  相似文献   

14.
Recent evidence has shown that cloned, murine CTL cell lines are resistant to the cytotoxic components of the toxic granules they release upon specific interaction with their target cells. Inasmuch as the resistance might be due to selection in culture over many months by repeated exposure to these cytolytic components (which are released repeatedly as a result of the cultured CTL being periodically stimulated by target cells), we asked whether primary CTL are also resistant. The primary CTL were elicited in vivo by i.p. injection of allogeneic tumor cells or in vitro by 5- to 6-day MLC or by 48-h exposure to the lectin Con A. The responding cells were separated into purified CD8+ (i.e., CD4-, CD8+) and purified CD4+ (i.e., CD4+, CD8-) T cell populations that were analyzed for cytolytic activity and for resistance to lysis by toxic secretory granules derived from cloned CTL cell lines. The CD8+ T cells were highly cytolytic and relatively resistant; they retained their cytolytic activity and were lysed to a minimal extent (0 to 10%) by quantities of isolated granules that lysed 80 to 90% of the P815 tumor cell line (tested as a representative standard cell line). The CD4+ T cells, in contrast, had only minimal cytolytic activity and were far more susceptible to granule-mediated lysis. Although the resistance of primary CD8+ T cells is impressive, it is not as pronounced as the resistance of the cloned CTL cell lines, indicating that during long-term culture there is some selection for increased resistance to granule-mediated lysis. In contrast to T cells (especially CD8+ T cells), Ia+ macrophages, isolated from primary immune peritoneal exudates, were highly susceptible to granule-mediated lysis.  相似文献   

15.
Lack of target cell participation in cytotoxic T lymphocyte-mediated lysis.   总被引:1,自引:0,他引:1  
Data on the subject of cell-mediated cytotoxicity suggest that no single mechanism is likely to provide a satisfactory explanation of this process. Lytic pathways have been proposed that involve both the effector cell and the target cell as active participants. In this report we describe a system in which the target cell is rendered unable to participate in its own demise. Using sheep E derivatized with CD3 antibodies, we show that metabolic inhibition of SRBC by depleting intracellular ATP with iodoacetamide, or even conversion of SRBC to "ghosts" by hypotonic lysis and resealing, has no effect on cytolysis. In the presence of EGTA or cholera toxin, both of which inhibit CTL degranulation, there is a strong suppression of both serine esterase release and cytolysis. These data show clearly that in some situations CTL are able to lyse target cells without any active participation by the target cells themselves.  相似文献   

16.
The induction of cytotoxic T lymphocytes (CTL) from precursor T cells requires both antigen and lymphokine signals. Previous work from our laboratory has indicated that three lymphokines are required for the induction of CTL from murine thymocytes; interleukin 2, interferon-gamma (IFN-gamma), and a partially characterized factor referred to as cytotoxic differentiation factor (CDF). While attempting to clone CDF from the human T cell line C10-MJ2, we found that a gene encoding CDF-like activity is identical to the gene encoding the factor known variously as B cell stimulatory factor-2 (BSF-2), IFN-beta 2, and 26-kDa protein. We report here that BSF-2 can induce the differentiation of Ly-2+ CTL from murine thymocytes in the presence of interleukin 2 and that the level of cytotoxicity is augmented by the addition of murine IFN-gamma. Serine esterase, a marker for cytotoxic granules in CTL, was induced only in the presence of BSF-2, and the level of serine esterase activity correlated with the level of serine esterase activity correlated with the level of cytotoxicity. These data suggest that BSF-2 is a differentiation factor for CTL and that it functions in part by inducing proteins required for mediating target cell lysis.  相似文献   

17.
Perforin mRNA in primary peritoneal exudate cytotoxic T lymphocytes   总被引:6,自引:0,他引:6  
Considerable evidence indicates that cloned CTL cell lines kill target cells by releasing toxic granules that contain a cytolytic protein, called perforin, and several serine esterases (granzymes A to F). However, primary CTL, such as the highly cytolytic peritoneal exudate lymphocyte (PEL) cell population, have been found by a hemolytic assay to have no perforin, or perhaps only borderline levels of that protein, suggesting that these cells use a different lytic mechanism. To determine whether or not primary CTL express the perforin gene, we have here compared mRNA from PEL CTL and from a cloned CTL cell line, 2C, by Northern blot analysis using a perforin cDNA probe. CD8+ PEL CTL contain approximately 30% of the amount of perforin message present in 2C. Moreover, depletion of CD8+ T cells from the total peritoneal exudate cell population removes both cytolytic activity and perforin message. We have previously shown that PEL CTL elicit the same changes in target cells as cloned CTL cell lines and are resistant to lysis by the toxic granules purified from these cells lines. Taken together these results are consistent with the view that primary CTL, as well as long term cloned CTL cell lines, exercise their cytolytic activity by means of perforin.  相似文献   

18.
Linker for activation of T cells (LAT) is a transmembrane adaptor protein that is essential to bridge T cell receptor (TCR) engagement to downstream signaling events. The indispensable role of LAT in thymocyte development and T cell activation has been well characterized; however, the function of LAT in cytotoxic-T-lymphocyte (CTL) cytotoxicity remains unknown. We show here that LAT-deficient CTLs failed to upregulate FasL and produce gamma interferon after engagement with target cells and had impaired granule-mediated killing. We further dissected the effect of the LAT deletion on each step of granule exocytosis. LAT deficiency led to altered synapse formation, subsequently causing unstable T cell-antigen-presenting cell (APC) conjugates. Microtubule organizing center polarization and granule reorientation were also impaired by LAT deficiency, leading to reduced granule delivery. Despite these defects, granule release was still observed in LAT-deficient CTLs due to residual calcium flux and phospholipase C (PLC) activity. Our data demonstrated that LAT-mediated signaling intricately regulates CTL cytotoxicity at multiple steps.  相似文献   

19.
Granzyme B activity in target cells detects attack by cytotoxic lymphocytes   总被引:3,自引:0,他引:3  
Lymphocyte-mediated cytotoxicity via granule exocytosis operates by the perforin-mediated transfer of granzymes from CTLs and NK cells into target cells where caspase activation and other death pathways are triggered. Granzyme B (GzB) is a major cytotoxic effector in this pathway, and its fate in target cells has been studied by several groups using immunodetection. In this study, we have used a newly developed cell-permeable fluorogenic GzB substrate to measure this protease activity in three different living targets following contact with cytotoxic effectors. Although no GzB activity is measurable in CTL or NK92 effector cells, this activity rapidly becomes detectable throughout the target cytoplasm after effector-target engagement. We have combined the GzB substrate with a second fluorogenic substrate selective for caspase 3 to allow both flow cytometry and fluorescence confocal microscopy studies of cytotoxicity. With both effectors, caspase 3 activity appears subsequent to that of GzB inside all three targets. Overexpression of Bcl-2 in target cells has minimal effects on lysis, NK- or CTL-delivered GzB activity, or activation of target caspase 3. Detection of target GzB activity followed by caspase 3 activation provides a unique readout of a potentially lethal injury delivered by cytotoxic lymphocytes.  相似文献   

20.
Previous observations that the highly conserved poxvirus-encoded serpins inhibit cytotoxic activities of alloreactive CTL via granule and/or Fas-mediated pathways was taken to indicate their involvement in immune evasion by poxviruses. We now show that interference with 51Cr release from target cells by ectromelia and cowpoxvirus is limited to alloreactive but not MHC-restricted CTL. The data are in support of the paramount importance of CTL and its effector molecule perforin in the recovery from primary ectromelia virus infection and question the role of serpins in the evasion of poxviruses from killing by CTL. Further analysis of poxvirus interference with target cell lysis by alloreactive CTL revealed that suppression primarily affects the Fas-mediated, and to a lesser extent, the granule exocytosis pathway. Serpin-2 is the main contributor to suppression for both killing pathways. In addition, inhibition of lysis was shown to be both target cell type- and MHC allotype-dependent. We hypothesize that differences in TCR affinities and/or state of activation between alloreactive and MHC-restricted CTL as well as the quality (origin) of target cells are responsible for the observed phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号