首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dependence of the phosphorylation reaction rate on the glucose-1-phosphate concentration is investigated in Dasyatis pastinaca in a wide temperature range (5-45 degrees C). In the temperature range of 20-40 degrees C nH is equal to 1.3-1.7. The disturbance of allosteric interactions of active sites with the loss of kinetic substrate cooperativity is observed at 45 degrees C. v(S)-Dependence with the intermediate plateau is obtained at 5 degrees C and high concentration of glycogen phosphorylase B (EC 2.4.1.1), that is explained by the formation of inactive tetramer. Studies in activation of glycogen phosphorylase B of Dasyatis pastinaca under the effect of glycogen phosphorylase (EC 2.7.1.38) kinase have revealed temperature-dependent changes in the pattern of kinetic curve. An assumption is advanced that the presence of the association-dissociation equilibrium in oligomeric forms of glycogen phosphorylase B with different enzymic activity and the effect of the temperature-dependent conformation state of this enzyme on the kinase reaction rate plays an essential role in regulation of glycogenolysis in the muscular tissue of ectothermal animals.  相似文献   

2.
The activity of the isolated plasma membrane H+-ATPase from Kluyveromyces lactis was measured during incubation at 35-45 degrees C and in the absence or in the presence of 0-0.6 M trehalose. As the temperature of incubation was raised from 35 to 45 degrees C, increasing enzyme inactivation rates were observed. Thermal inactivation kinetics of the H+-ATPase were biphasic exhibiting a first rapid phase and then a second slow phase. The transition from the native state occurred through a temperature-mediated increase in the inactivation rate constants of both phases. A model is proposed where the native H+-ATPase yields a partially active intermediary during the first phase of inactivation and then the intermediary is slowly converted into a totally inactive enzyme in the second phase. At each of these temperatures trehalose protected the enzymatic activity in a concentration dependent manner. Full protection was observed at 0.6 M trehalose in the range of 35-40 degrees C. Whereas, at 42 and 45 degrees C, the trehalose-mediated thermoprotection of the H+-ATPase was only partial. Trehalose stabilized the enzyme mainly by preventing the temperature dependent increase of the first and second inactivation rate constants.  相似文献   

3.
The enthalpy balance model of growth uses measurements of the rates of heat and CO(2) production to quantify rates of decarboxylation, oxidative phosphorylation and net anabolism. Enthalpy conversion efficiency (eta(H)) and the net rate of conservation of enthalpy in reduced biosynthetic products (R(SG)DeltaH(B)) can be calculated from metabolic heat rate (q) and CO(2) rate (R(CO2)). eta(H) is closely related to carbon conversion efficiency and the efficiency of conservation of available electrons in biosynthetic products. R(SG)DeltaH(B) and eta(H) can be used, together with biomass composition, to describe the rate and efficiency of growth of plant tissues. q is directly related to the rate of O(2) consumption and the ratio q:R(CO2) is inversely related to the respiratory quotient. We grew seedlings of Eucalyptus globulus at 16 and 28 degrees C for four to six weeks, then measured q and R(CO2) using isothermal calorimetry. Respiratory rate at a given temperature was increased by a lower growth temperature but eta(H) was unaffected. Enthalpy conversion efficiency - and, therefore, carbon conversion efficiency - decreased with increasing temperature from 15 to 35 degrees C. The ratio of oxidative phosphorylation to oxygen consumption (P/O ratio) was inferred in vivo from eta(H) and by assuming a constant ratio of growth to maintenance respiration with changing temperature. The P/O ratio decreased from 2.1 at 10-15 degrees C to less than 0.3 at 35 degrees C, suggesting that decreased efficiency was not only due to activity of the alternative oxidase pathway. In agreement with predictions from non-equilibrium thermodynamics, growth rate was maximal near 25 degrees C, where the calculated P/O ratio was about half maximum. We propose that less efficient pathways, such as the alternative oxidase pathway, are necessary to satisfy the condition of conductance matching whilst maintaining a near constant phosphorylation potential. These conditions minimize entropy production and maximize the efficiency of mitochondrial energy conversions as growing conditions change, while maintaining adequate finite rates of energy processing.  相似文献   

4.
31P and 1H nuclear magnetic resonance spectroscopy has been used to follow noninvasively the time course of energetic metabolite levels in human heart atrial appendages preserved under various temperatures and buffer conditions. From sample harvest up to the normal 5-h time limit for heart preservation, ATP levels in human atrial appendages are much better maintained in 0.9% saline and PIPES-buffered preservation solutions at 12 degrees C than at 4 degrees C. Furthermore, preservation at 12 degrees C can be improved considerably by using high extracellular buffer concentrations. The increased buffer concentration allows better maintenance of the intracellular pH and leads to a faster glycolytic rate as measured by lactate production. At 4 degrees C, ATP levels decline rapidly during the first 5 h but reached a stable plateau, which is well maintained over 15-20 h. At this temperature, the rate of lactate production is similar at all buffer concentrations (20, 60, and 100 mM PIPES). As a consequence of these observations, we postulate that the mechanisms of ATP production and utilization at 4 degrees C and at 12 degrees C are different. At 4 degrees C, the rate of glycolysis is temperature limited whereas at 12 degrees C, low intracellular pH inhibits glycolysis.  相似文献   

5.
达氏鳇不同发育期胚胎对低温的耐受研究   总被引:3,自引:0,他引:3  
研究了达氏鳇12个发育期胚胎经过不同低温(2 ℃、3 ℃、5 ℃、7 ℃和8 ℃)处理12 h、24 h、2 d、3 d、6 d、10 d、15 d、20 d和30 d后的孵化率和仔鱼成活率.结果表明,卵黄栓期、隙状胚孔期、神经管闭合期胚胎在2~8 ℃水温下,处理24 h后孵化率为0;卵裂期、囊胚早期、原肠中期胚胎在2~8 ℃水温下,处理3 d后孵化率低于30%;囊胚晚期、原肠早期、眼基期、尾芽期、心跳期和尾达头部期胚胎在5~8 ℃水温下,处理3 d后孵化率、仔鱼成活率超过70%;随低温处理时间延长,胚胎和仔鱼的死亡率增加,处理时间与孵化率、仔鱼成活率呈负相关;囊胚晚期、原肠早期、眼基期胚胎在5 ℃水温下耐受力较强,处理10 d后孵化率、仔鱼成活率超过70%.本研究表明,达氏鳇胚胎发育过程中囊胚晚期、原肠早期和眼基期胚胎可以在某一低温下进行短期保存,其孵化率、仔鱼成活率与常温(16~17 ℃)下没有显著差异.这对于达氏鳇胚胎(受精卵)的长途运输有重要意义.  相似文献   

6.
Excised grains of wheat (Triticum aestivum) varieties HD 2285 (relatively tolerant) and HD 2329 (susceptible type) were incubated for 1 hr at 15 degrees, 25 degrees, 35 degrees and 45 degrees C. In an another treatment, excised grains were incubated for 1 hr at increasing temperature (15 degrees, 25 degrees, 35 degrees and 45 degrees C) continuously, thus exposing the grains to gradual rise in temperature. The above treated grains were then analysed for the activity of soluble starch synthase (SSS) and granule bound starch synthase (GBSS) assayed at 20 degrees C. SSS activity decreased as the pre-exposure temperature was higher, though the tolerant variety showed lesser decrease. Decrease in SSS activity was lesser when excised grains were exposed to gradual rise in temperature from 15 degrees to 45 degrees C as compared to direct exposure to 45 degrees C. Pre-exposure of excised grains to different temperatures however, had no significant effect on GBSS activity.  相似文献   

7.
A thermosensitive sporulation mutant (ts-15) of Bacillus subtilis has been isolated. This mutant when grown at the restrictive temperature (42 degrees C) is unable to sporulate, shows no intracellular protease activity and no protein turnover. These three traits were recovered in two revertants (ts-15R1 and ts-15R2) and were also transmitted together by transformation into the wild type. Immunological studies have shown that when ts-15 is grown at 42 degrees C it synthesizes a 'cryptic' protein with apparently the same antigenic properties as the wild type or as ts-15 mutant grown at the permissive temperature (30 degrees C). The intracellular proteases from the wild type and from ts-15 grown at 30 degrees C and 42 degrees C were completely purified and their properties were studied with respect to their molecular weights, substrate specificity, inhibition pattern, heat inactivation and antigenicity. The molecular weight of the enzyme from the wild type or ts-15 grown at 30 degrees C was 64000--65000 in the absence of sodium dodecylsulfate and 31000--32000 in the presence of sodium dodecylsulfate. It was assumed therefore that the active enzyme is formed from two similar subunits. However, the intracellular protease from ts-15 grown at 42 degrees C showed the same molecular weight of 32000--34000 in the presence or in the absence of sodium dodecylsulfate. On the basis of this experiment and others described in the paper we concluded that the mutation in ts-15 is most likely a point mutation in a structural gene of an intracellular protease and results in an inability to assemble the two subunits into an active form.  相似文献   

8.
Poly[d(A-br5C).d(G-T)], a synthetic polynucleotide with a 50% A-T base composition, undergoes a reversible, highly co-operative transition between the right-handed B and left-handed Z conformations. The latter is stabilized at both elevated temperature and ionic strength. The B and Z-forms of poly[d(A-br5C).d(G-T)] coexist in 4.6 M-NaCl at 45 degrees C. Due to slow exchange, two sets of Tim and Gim resonances are observed and can be assigned to the B and Z conformations (the chemical shifts are, respectively, Tim = 13.4, 14.1 p.p.m. (parts/million); and Gim = 11.9, 12.4 p.p.m.). Measurements of the 1H spin-lattice (R1) and spin-spin (R2) relaxation rates of the exchangeable thymine (Tim) and guanine (Gim) imino protons have been used to probe the internal dynamics of the B and Z-forms of poly[d(A-br5C).d(G-T)] and the mechanism of the B-Z transition. The proton exchange behavior in the B and Z conformations is quite different. At elevated temperature, R1 for both Tim and Gim in the B conformation is dominated by exchange with the solvent, with Tim exchanging more rapidly than Gim. This demonstrates that exchange involves the opening of single base-pairs and that neighboring A-T and G-br5C base-pairs exchange independently of each other. B-form poly[d(A-br5C).d(G-T)] is unusual in that there is an acceleration of the Tim exchange rate with increasing NaCl concentration. Conversion to the Z-form by addition of 4.5 M-NaCl dramatically reduces both the Tim and Gim exchange rates (estimated to be less than 2 s-1 at 70 degrees C). Thus, the G-br5C base-pair and, in particular, the A-T base-pair are stabilized in the Z conformation. By measuring relaxation rates at 45 to 50 degrees C where the B and Z-forms are in equilibrium, we find that the B-Z interconversion rates are less than two per second. In the B conformation at 25 degrees C, the dipolar contributions to the imino proton relaxation rates are about one-third of those expected on the basis of a rigid rod model for 65 base-pair fragments, a difference we assign to large amplitude (30 degrees high frequency (less than 100 ns) out-of-plane motions of the bases. Conversion to the Z conformation has little effect on the dipolar contributions to relaxation, i.e. on the internal motions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
[14C]Noviflumuron uptake, clearance, rate of excretion, and transfer from treated to untreated termite workers were evaluated at 15,19, 23, and 27 degrees C. Feeding units were constructed from plastic containers provisioned with washed sand, distilled water, [14C]noviflumuron-treated feeding discs (0.05 or 0.5% [AI]), and Reticulitermes flavipes (Kollar) workers. Feeding units were held in environmental growth chambers preset at 15, 19, 23, and 27 degrees C. The amount of [14C]noviflumuron present within R. flavipes was measured by scintillation counting and subsequently quantified. Uptake of noviflumuron by R. flavipes workers at 15 degrees C was approximately 2.8 times less than at 19 or 23 degrees C and approximately 4.4 times less than at 27 degrees ighest uptake of [14C]noviflumuron occurred at 27 degrees C and 144 h. Most transfer of [14C]noviflumuron from treated to untreated termite workers occurred between 19 and 27 degrees C. [14C]Noviflumuron had a half-life in R. flavipes workers of approximately 31-45 d, dependent on temperature. A higher amount of [14C]noviflumuron was lost through excretion at > or = 19 degrees C (approximately 15-22%) compared with 15 degrees C (0.27%). Results indicated that increased uptake, transfer, and clearance of noviflumuron by R. flavipes occurred at warmer temperatures (19-27 degrees C), and all of these processes were significantly lower at 15 degrees C.  相似文献   

10.
1. The extent of cardiovascular adjustments to heat and cold were investigated between ambient temperatures of 5 and 45 degrees C by measuring conductance and the rates of oxygen consumption and heart beats. 2. Minimum heart rate was observed at 25 degrees C (114 +/- 9 beats/min). In the heat at 45 degrees C heart rate was observed to increase only slightly (127 +/- 12 beats/min) but in the cold -5 degrees C heart rate nearly doubled that at 25 degrees C. 3. Thermal conductance was on average 0.031 mlO2 (g. hr. degrees C)-1 below 25 degrees C but increased by more than 20 times at 40 degrees C. 4. A positive correlation between heart rate and rate of oxygen consumption was demonstrated below 25 degrees C and the relation may be of practical use.  相似文献   

11.
NMR spectra of human lymphotactin (hLtn), obtained under various solution conditions, have revealed that the protein undergoes a major conformational rearrangement dependent on temperature and salt concentration. At high salt (200 mm NaCl) and low temperature (10 degrees C), hLtn adopts a chemokine-like fold, which consists of a three-stranded antiparallel beta-sheet and a C-terminal alpha-helix (Kulo?lu, E. S., McCaslin, D. R., Kitabwalla, M., Pauza, C. D., Markley, J. L., and Volkman, B. F. (2001) Biochemistry 40, 12486-12496). We have used NMR spectroscopy, sedimentation equilibrium, and intrinsic fluorescence to monitor the reversible conformational change undergone by hLtn as a function of temperature and ionic strength. We have used two-, three- and four-dimensional NMR spectroscopy of isotopically enriched protein samples to determine structural properties of the conformational state stabilized at 45 degrees C and 0 mm NaCl. Patterns of NOEs and (1)H(alpha) and (13)C chemical shifts show that hLtn rearranges under these conditions to form a four-stranded, antiparallel beta-sheet with a pattern of hydrogen bonding that is completely different from that of the chemokine fold stabilized at 10 degrees C and 200 mm NaCl. The C-terminal alpha-helix observed at 10 degrees C and 200 mm NaCl, which is conserved in other chemokines, is absent at 45 degrees C and no salt, and the last 38 residues of the protein are completely disordered, as indicated by heteronuclear (15)N-(1)H NOEs. Temperature dependence of the tryptophan fluorescence of hLtn in low and high salt confirmed that the chemokine conformation is stabilized by increased ionic strength. Sedimentation equilibrium analytical ultracentrifugation showed that hLtn at 40 degrees C in the presence of 100 mm NaCl exists mainly as a dimer. Under near physiological conditions of temperature, pH, and ionic strength, both the chemokine-like and non-chemokine-like conformations of hLtn are significantly populated. The functional relevance of this structural interconversion remains to be elucidated.  相似文献   

12.
The archaebacterium, Pyrococcus furiosus, grows optimally at 100 degrees C by a fermentative type metabolism in which H2 and CO2 are the only detectable products. The organism also reduces elemental sulfur (S0) to H2S. Cells grown in the absence of S0 contain a single hydrogenase, located in the cytoplasm, which has been purified 350-fold to apparent homogeneity. The yield of H2 evolution activity from reduced methyl viologen at 80 degrees C was 40%. The hydrogenase has a Mr value of 185,000 +/- 15,000 and is composed of three subunits of Mr 46,000 (alpha), 27,000 (beta), and 24,000 (gamma). The enzyme contains 31 +/- 3 g atoms of iron, 24 +/- 4 g atoms of acid-labile sulfide, and 0.98 +/- 0.05 g atoms of nickel/185,000 g of protein. The H2-reduced hydrogenase exhibits an electron paramagnetic resonance (EPR) signal at 70 K typical of a single [2Fe-2S] cluster, while below 15 K, EPR absorption is observed from extremely fast relaxing iron-sulfur clusters. The oxidized enzyme is EPR silent. The hydrogenase is reversibly inhibited by O2 and is remarkably thermostable. Most of its H2 evolution activity is retained after a 1-h incubation at 100 degrees C. Reduced ferredoxin from P. furiosus also acts as an electron donor to the enzyme, and a 350-fold increase in the rate of H2 evolution is observed between 45 and 90 degrees C. The hydrogenase also catalyzes H2 oxidation with methyl viologen or methylene blue as the electron acceptor. The temperature optimum for both H2 oxidation and H2 evolution is greater than 95 degrees C. Arrhenius plots show two transition points at approximately 60 and approximately 80 degrees C independent of the mode of assay. That occurring at 80 degrees C is associated with a dramatic increase in H2 production activity. The enzyme preferentially catalyzes H2 production at all temperatures examined and appears to represent a new type of "evolution" hydrogenase.  相似文献   

13.
A temperature decrease changes the contractility of the amphibian heart, but the underlying mechanisms are not totally understood. The objectives of the present work were to better understand the intrinsic mechanisms supporting contractility changes induced by a rapid temperature decrease in the ventricle of Rana ridibunda, and to investigate how fast they develop. Ventricular mechanical cycles (VMCs) and monophasic action potentials (MAPs) recorded from 15 isolated hearts were measured at 15, 30, 45, 60, 90, 120 and 150 s after the application of Ringer solutions of 20, 10 and 5 degrees C. Treatment with 10 and 5 degrees C Ringer solutions decreased the heart rate, and increased the magnitude of the ventricular contraction and the duration of the contraction and relaxation periods. The electrical changes included prolongation of the MAP depolarization plateau, which also decreased in amplitude as an effect of perfusion with 5 degrees C Ringer solution. In addition, treatment with 5 degrees C Ringer solution increased the latency of contraction. The block of L-type channels totally abolished the depolarization plateau at all perfusion temperatures, but failed to inhibit ventricular contraction. In conclusion, treatment with cold temperatures changes the electrical activity of the ventricular myocardium in R. ridibunda hearts, which results in modified ventricular contractility. Data suggest that in addition to L-type Ca2+ channels, other components that support calcium elevation are present R. ridibunda ventricular cells.  相似文献   

14.
The temperature-sensitive (ts) Chinese hamster ovary (CHO) cell mutant tsH1 contains a thermolabile leucyl-tRNA synthetase. Upon incubation at the nonpermissive temperature of 39.5 degrees C, the enzyme became reversibly inhibited over a period of minutes, and the cells lost viability over a period of many hours. However, killing of tsH1 by acute heating at 45 degrees C was identical to that of wild-type (SC) cells. In addition, the heat-induced inhibition of protein synthesis was similar for both cell types, as measured after acute heating at 45 degrees C. Furthermore, both killing and inhibition of protein synthesis showed thermotolerance in both cell types. In contrast to the effects at 45 degrees C, at 39.5 degrees C, neither the inhibition of leucyl-tRNA synthetase activity nor the killing of tsH1 expressed thermotolerance. Also, treatment of tsH1 at 39.5 degrees C did not induce thermotolerance to killing at 45 degrees C. The inhibition of leucyl-tRNA synthetase activity in tsH1 at 39.5 degrees C was further distinguished from the 45 degrees C-induced inhibition of protein synthesis in SC cells by a much more rapid reversal of the inhibition of leucyl-tRNA synthetase activity. Also, the rate of reversal of the inhibition of protein synthesis by 45 degrees C in SC cells was decreased by increased heat dose. Such was not true for the 39.5 degrees C inhibition of leucyl-tRNA synthetase activity in tsH1. The data indicate that there exist two distinct types of thermal inhibition--one slowly reversible type which was observed during and after heating at 45 degrees C and both induced and expressed thermotolerance, and a second, rapidly reversible type, which was evident only during heating of tsH1 at 39.5 degrees C and neither induced nor expressed thermotolerance.  相似文献   

15.
We have used alanine-scanning site-directed mutagenesis of the dimer contact region of starch phosphorylase from Corynebacterium callunae to explore the relationship between a protein conformational change induced by phosphate binding and the up to 500-fold kinetic stabilization of the functional quarternary structure of this enzyme when phosphate is present. Purified mutants (at positions Ser-224, Arg-226, Arg-234, and Arg-242) were characterized by Fourier transform-infrared (FT-IR) spectroscopy and enzyme activity measurements at room temperature and under conditions of thermal denaturation. Difference FT-IR spectra of wild type and mutants in (2)H(2)O solvent revealed small changes in residual amide II band intensities at approximately 1,550 cm(-1), indicating that (1)H/(2)H exchange in the wild type is clearly perturbed by the mutations. Decreased (1)H/(2)H exchange in comparison to wild type suggests formation of a more compact protein structure in S224A, R234A, and R242A mutants and correlates with rates of irreversible thermal denaturation at 45 degrees C that are up to 10-fold smaller for the three mutants than the wild type. By contrast, the mutant R226A inactivates 2.5-fold faster at 45 degrees C and shows a higher (1)H/(2)H exchange than the wild type. Phosphate (20 mM) causes a greater change in FT-IR spectra of the wild type than in those of S224A and 234A mutants and leads to a 5-fold higher stabilization of the wild type than the two mutants. Therefore, structural effects of phosphate binding leading to kinetic stability of wild-type starch phosphorylase are partially complemented in the S224A and R234A mutants. Infrared spectroscopic measurements were used to compare thermal denaturations of the mutants and the wild type in the absence and presence of stabilizing oxyanion. The broad denaturation transition of unliganded wild type in the range 40-50 degrees C is reduced in the S224A and R234A mutants, and this reflects mainly a shift of the onset of denaturation to a 4-5 degrees C higher value.  相似文献   

16.
Heart rate of the Mediterranean limpet Patella caerulea L. was investigated on the natural shore and in the laboratory by using a technique based on infrared phototransducers. Field recording occurred in the Gulf of Trieste (northern Adriatic) during March and June 1997. A consistent dependence of heart rate on temperature was observed in limpets both when submerged and when exposed to air in the two periods, but thermal acclimation was evident. During spontaneous activity at high tide, heart rate increased 1.5-1.7 times the values observed during resting in water at corresponding temperatures. The dependence of heart rate on temperature (10 degrees, 16 degrees, and 22 degrees C) and size (wet weight <1.25 and >1.30 g) in submerged limpets from different populations (northern Adriatic and Tyrrhenian) was tested in the laboratory by adopting a factorial design. The results showed a marked effect of temperature, body weight, and their interaction, independent from the site of origin. Smaller limpets showed a linear increase of heart rate in the whole range of temperature tests, while in the larger ones the increase between 10 degrees and 16 degrees C was greater than between 16 degrees and 22 degrees C. Heart rate decreased with increasing body size at control (16 degrees C) and high (22 degrees C) temperature, while at lower temperature (10 degrees C) no effect of body size was evident. When removed from their home scar, limpets increased heart rate to about 1.5 times the reference value. Finally, correlation of oxygen consumption with heart rate of submerged limpets maintained at a different temperature (10 degrees -22 degrees C) was statistically significant.  相似文献   

17.
The gene encoding RNase HII from the psychrotrophic bacterium, Shewanella sp. SIB1 was cloned, overexpressed in Escherichia coli, and the recombinant protein was purified and biochemically characterized. SIB1 RNase HII is a monomeric protein with 212 amino acid residues and shows an amino acid sequence identity of 64% to E. coli RNase HII. The enzymatic properties of SIB1 RNase HII, such as metal ion preference, pH optimum, and cleavage mode of substrate, were similar to those of E. coli RNase HII. SIB1 RNase HII was less stable than E. coli RNase HII, but the difference was marginal. The half-lives of SIB1 and E. coli RNases HII at 30 degrees C were approximately 30 and 45 min, respectively. The midpoint of the urea denaturation curve and optimum temperature of SIB1 RNase HII were lower than those of E. coli RNase HII by approximately 0.2 M and approximately 5 degrees C, respectively. However, SIB1 RNase HII was much more active than E. coli RNase HII at all temperatures studied. The specific activity of SIB1 RNase HII at 30 degrees C was 20 times that of E. coli RNase HII. Because SIB1 RNase HII was also much more active than SIB1 RNase HI, RNases HI and HII represent low- and high-activity type RNases H, respectively, in SIB1. In contrast, RNases HI and HII represent high- and low-activity type RNases H, respectively, in E. coli. We propose that bacterial cells usually contain low- and high-activity type RNases H, but these types are not correlated with RNase H families.  相似文献   

18.
The carboxy terminus of the human DNA polymerase-alpha contains a zinc finger motif. Three-dimensional structures of this motif containing 38 amino acid residues, W L I C E E P T C R N R T R H L P L Q F S R T G P L C P A C M K A T L Q P E, were determined by nuclear magnetic resonance (NMR) spectroscopy. The structures reveal an alpha-helix-like domain at the amino terminus, extending 13 residues from L2 through H15 with an interruption at the sixth residue. The helix region is followed by three turns (H15-L18, T23-L26 and L26-A29), all of which involve proline. The first turn appears to be type III, judging by the dihedral angles. The second and third turns appear to be atypical. A second, shorter helix is formed at the carboxy terminus extending from C30 through L35. A fourth type III turn starting at L35 was also observed in the structure. Proline serves as the third residue of all the turns. Four cysteine residues, two located at the beginning of the helix at the N-terminus and two at the carboxy end, are coordinated to Zn(II), facilitating the formation of a loop. One of the cysteines at the carboxy terminus is part of the atypical turn, while the other is the part of the short helix. These structural features are consistent with the circular dichroism (CD) measurements which indicate the presence of 45% helix, 11% beta turns and 19% non-ordered secondary structures. The zinc finger motif described here is different from those observed for C(4), C(2)H(2), and C(2)HC modules reported in the literature. In particular, polymerase-alpha structures exhibit helix-turn-helix motif while most zinc finger proteins show anti-parallel sheet and helix. Several residues capable of binding DNA, T, R, N, and H are located in the helical region. These structural features imply that the zinc finger motif is most likely involved in binding DNA prior to replication, presumably through the helical region. These results are discussed in the context of other eukaryotic and prokaryotic DNA polymerases belonging to the polymerase B family.  相似文献   

19.
Three groups of subjects (6 subj in each group) underwent the following precedures: group A was given a 20-min head-up tilt at 21 degrees C followed by 4 h of exercise at 33.9 degrees C DB, 32.2 degrees C WB, and a repetition of tilting after exercise in heat; group B underwent the same procedure at 21 degrees C; group C was tilted at 21 degrees C, rested in heat for 4 h and was retilted in heat. The above procedures were repeated for 8 days, and on the last day groups B and C underwent the same treatment as group A. Group A showed the usual decreases in heart rate and rectal temperature and an increase in sweat rate on acclimation. This corresponded to marked improvements in heat-orthostatism. While five subjects in group A fainted during post-exposure tilting on the first exposure, none fainted on the last day. Resting in heat (group C) did not cause any acclimation to work in heat. This corresponded to poor heat-orthostatism after the work-heat procedure when five subjects fainted. Mild training at 21 degrees C (group B) resulted in minor improvements to work in heat as evident by some improvements in heart rate responses after the 1st and 2nd h of exposure. This corresponded to better heat-orthostatism and fewer men fainting than in group C. The results indicated that heat-orthostatism improves on acclimation to the same extent as exercise heart rate and rectal temperature.  相似文献   

20.
Depending on their interaction with intracellular proteins, G protein-coupled receptors (GPCR) often display different affinities for agonists at 37 degrees C. Determining the affinity at that temperature is often difficult in intact cells as most GPCRs are internalized after activation. When sequestration of the B2 bradykinin receptor (B2R) was inhibited by either 0.5 M sucrose or phenylarsine oxide (PAO), a shift in the affinity was detected when the incubation temperature was raised from 4 degrees C to 37 degrees C or lowered from 37 degrees C to 4 degrees C. In contrast, binding of the antagonist [3H]NPC 17731 was temperature-independent. B2R mutants displayed different affinity shifts allowing conclusions on the role of the involved amino acids. By inhibiting receptor sequestration it was possible to determine also dissociation of [3H]BK and of [3H]NPC 17731 from intact cells at 37 degrees C. Surprisingly, both dissociation rates were markedly enhanced by the addition of unlabeled ligand, most likely via prevention of reassociation of dissociated [3H]ligand. This suggests that dissociated [3H]ligand cannot move freely away from the receptor. In summary, our data demonstrate that inhibition of receptor internalization either by PAO or sucrose provides an excellent method to study receptor function and the effects of mutations in intact cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号