首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The nucleotide sequence of the repeat unit of the mitochondrial genome of a spontaneous petite mutant of S. cerevisiae is reported. The sequence provides direct information on the AT-spacers and GC-clusters of the mitochondrial genome of yeast.  相似文献   

2.
Summary Cytoplasmic reversion to fertility in cms-S maize has been previously correlated with changes in mitochondrial genome organization, specifically with loss of the autonomously replicating linear plasmid-like DNAs, S1 and S2, and with accompanying alterations in the high molecular weight mtDNA (main genome) that specifically involved S1 and S2 sequences. These studies, however, dealt with cytoplasmic revertants occurring in the cms-VG M825 inbred line and in the cms-VG M825/Oh07 F1 hybrid. This paper deals principally with patterns of mitochondrial DNA reorganization accompanying cytoplasmic reversion to fertility in the WF9 inbred line nuclear background. Here the free S1 and S2 plasmid-like DNAs are retained in the revertants. Mitochondrial DNA analysis by Southern hybridization using cloned fragments of S1 and S2 shows altered organization around S-homologous regions in the main mitochondrial genome of revertants as compared with that of the male-sterile parental controls, but the pattern of main genome changes involving these regions differs from that of the cytoplasmic revertants that occurred in M825 and M825/Oh07 backgrounds. Similar experiments using a clone of the cytochrome oxidase I (COX I) gene of maize as a probe indicate that reorganization in this region is also involved in the changes in mtDNA that accompany cytoplasmic reversion to male fertility in cms-S WF9. The heterogeneity in patterns of reorganization of the main mtDNA genome that accompany cytoplasmic reversion in the same and different nuclear backgrounds are discussed in relation to cytoplasmic male sterility (CMS).  相似文献   

3.
Summary The mitochondrial genome organizations of a number of independent culture-derived fertile CMS-S revertants with the nuclear genotype W182BN were compared to spontaneous field revertants with the genotypes WF9, M825/Oh07 and 38-11. Regions of the genome around sequences homologous to the terminal repeats of the linear S1 and S2 episomes characteristic of CMS-S mitochondria were used as hybridization probes on Southern blots of BamHI and SalI digested mitochondrial DNA. The results obtained suggest that the nuclear, not the cytoplasmic, genotype of the parent plant affects the type of novel mitochondrial DNA organization found in the revertant. The DNA reorganization during reversion from CMS-S in tissue culture appears to be similar to that observed in spontaneous revertants obtained during the normal plant life-cycle. Unlike the situation for reversion from CMS-T, no common DNA sequence or reading frame appeared to be lost or disrupted in revertants.  相似文献   

4.
A study of an invertebrate mitochondrial genome, that of the blowflyPhormia regina, has been initiated to compare its structural and functional relatedness to other metazoan mitochondrial genomes. A restriction map of mitochondrial DNA (mtDNA) isolated from sucrose gradient-purified mitochondria has been established using a combination of single and double restriction endonuclease digestions and hybridizations with isolated mtDNA fragments, revealing a genome size of 17.5 kilobases (kb). A number of mitochondrial genes including those encoding the 12 S and 16 S ribosomal RNA, the cytochromec oxidase I subunit (COI) and an unidentified open reading frame (URF2) have been located on thePhormia mtDNA by Southern blot analysis using as probes both isolated mtDNA fragments and oligonucleotides derived from the sequences of previously characterized genes from rat andDrosophila yakuba mtDNAs. These data indicate that for those regions examined, the mitochondrial genome organization of blowfly mtDNA is the same as that ofDrosophila yakuba, the order being COI-URF2-12 S-16 S. These data also report the presence of an A + T-rich region, located as a 2.5-kb region between the URF2 and the 12 S rRNA genes, and its amplification by the polymerase chain reaction is described.  相似文献   

5.
6.
7.
Nuclear genotype affects mitochondrial genome organization of CMS-S maize   总被引:7,自引:0,他引:7  
Summary A WF9 strain of maize with the RD subtype of the S male-sterile cytoplasm (CMS-S) was converted to the inbred M825 nuclear background by recurrent backcrossing. The organization of the mitochondrial genomes of the F1 and succeeding backcross progenies was analyzed and compared with the progenitor RD-WF9 using probes derived from the S1 and S2 mitochondrial episomes, and probes containing the genes for cytochrome c oxidase subunit I (coxI), cytochrome c oxidase subunit II (coxII) and apocytochrome b (cob). Changes in mitochondrial DNA (mtDNA) organization were observed for S1-, S2-, and coxI-homologous sequences that involve loss of homologous restriction enzyme fragments present in the RD-WF9 progenitor. With the coxI probe, the loss of certain fragments was accompanied by the appearance of a fragment not detectable in the progenitor. The changes observed indicate the effect of the nuclear genome on the differential replication of specific mitochondrial subgenomic entities.  相似文献   

8.
Mrp2 is a protein component of the small subunit of mitochondrial ribosomes in the yeast Saccharomyces cerevisiae. We have examined the expression of Mrp2 in yeast mutants lacking mitochondrial DNA and found that the steady-state level of Mrp2 is dramatically decreased relative to wild type. These data suggest that the accumulation of Mrp2 depends on the expression of one or more mitochondrial gene products. The mitochondrial genome of S. cerevisiae encodes two components of the small ribosomal subunit, 15S rRNA and the Var1 protein, both of which are necessary for the formation of mature 37S subunits. Several studies have shown that in the absence of Var1 incomplete subunits accumulate, which lack a limited number of ribosomal proteins. Here, we show that Mrp2 is one of the proteins absent from subunits lacking Var1, indicating that Var1 plays an important role in the incorporation of Mrp2 into mitochondrial ribosomal subunits.  相似文献   

9.
Mitochondrial genome organization and cytoplasmic male sterility in plants   总被引:2,自引:0,他引:2  
Plant mitochondrial genomes are much larger and more complex than those of other eukaryotic organisms. They contain a very active recombination system and have a multipartite genome organization with a master circle resolving into two or more subgenomic circles by recombination through repeated sequences. Their protein coding capacity is very low and is comparable to that of animal and fungal systems. Several subunits of mitochondrial functional complexes, a complete set of tRNAs and 26S, 18S and 5S rRNAs are coded by the plant mitochondrial genome. The protein coding genes contain group II introns. The organelle genome contains stretches of DNA sequences homologous to chloroplast DNA. It also contains actively transcribed DNA sequences having open reading frames. Plasmid like DNA molecules are found in mitochondria of some plants Cytoplasmic male sterility in plants, characterized by failure to produce functional pollen grains, is a maternally inherited trait. This phenomenon has been found in many species of plants and is conveniently used for hybrid plant production. The genetic determinants for cytoplasmic male sterility reside in the mitochondrial genome. Some species of plants exhibit more than one type of cytoplasmic male sterility. Several nuclear genes are known to control expression of cytoplasmic male sterility. Different cytoplasmic male sterility types are distinguished by their specific nuclear genes(rfs) which restore pollen fertility. Cytoplasmic male sterility types are also characterized by mitochondrial DNA restriction fragment length polymorphism patterns, variations in mitochondrial RNAs, differences in protein synthetic profiles, differences in sensitivity to fungal toxins and insecticides, presence of plasmid DNAs or RNAs and also presence of certain unique sequences in the genome. Recently nuclear male sterility systems based on (i) over expression of agrobacterialrol C gene and (ii) anther specific expression of an RNase gene have been developed in tobacco andBrassica by genetic engineering methods.  相似文献   

10.
In the yeast Saccharomyces cerevisiae, the product of the nuclear gene CBP2 is required exclusively for the splicing of the terminal intron of the mitochondrial cytochrome b gene. The homologous gene from the related yeast, Saccharomyces douglasii, has been shown to be essential for respiratory growth in the presence of a wild-type S. douglasii mitochondrial genome and dispensable in the presence of an intronless mitochondrial genome. The two CBP2 genes are functionally interchangeable although the target intron of the S. cerevisiaeCBP2 gene is absent from the S. douglasii mitochondrial genome. To determine the function of the CBP2 gene in S. douglasii mitochondrial pre-RNA processing we have constructed and analyzed interspecific hybrid strains between the nuclear genome of S. cerevisiae carrying an inactive CBP2 gene and S. douglasii mitochondrial genomes with different intron contents. We have demonstrated that inactivation of the S. cerevisiaeCBP2 gene affects the maturation of the S. douglasii LSU pre-RNA, leading to a respiratory-deficient phenotype in the hybrid strains. We have shown that the CBP2 gene is essential for excision of the S. douglasii LSU intron in vivo and that the gene is dispensable when this intron is deleted or replaced by the S. cerevisiae LSU intron. Received: 1 October 1997 / Accepted: 18 November 1997  相似文献   

11.
We have studied the effects on the yeast mitochondrial genome of four analogues of ethidium bromide, in which the phenyl moiety has been replaced by linear alkyl chains of lengths varying from seven to fifteen carbon atoms. These analogues are more efficient than ethidium bromide in inducing petite mutants inSaccharomyces cerevisiae. The drugs also cause a loss of mtDNA from the cellsin vivo; however these analogues are in fact less effective inhibitors of mitochondrial DNA replicationper se, as shown by directin vitro studies. It is concluded that these analogues are more efficient than ethidium bromide in causing the fragmentation of mitochondrial DNA inS. cerevisiae.  相似文献   

12.
One of the more conspicuous features of plastid DNA (ptDNA) is its low guanine and cytosine (GC) content. As of February 2009, all completely-sequenced plastid genomes have a GC content below 43% except for the ptDNA of the lycophyte Selaginella uncinata, which is 55% GC. The forces driving the S. uncinata ptDNA towards G and C are undetermined, and it is unknown if other Selaginella species have GC-biased plastid genomes. This study presents the complete ptDNA sequence of Selaginella moellendorffii and compares it with the previously reported S. uncinata plastid genome. Partial ptDNA sequences from 103 different Selaginella species are also described as well as a significant proportion of the S. moellendorffii mitochondrial genome. Moreover, S. moellendorffii express sequence tags are data-mined to estimate levels of plastid and mitochondrial RNA editing. Overall, these data are used to show that: (1) there is a genus-wide GC bias in Selaginella ptDNA, which is most pronounced in South American articulate species; (2) within the Lycopsida class (and among plants in general), GC-biased ptDNA is restricted to the Selaginella genus; (3) the cause of this GC bias is arguably a combination of reduced AT-mutation pressure relative to other plastid genomes and a large number of C-to-U RNA editing sites; and (4) the mitochondrial DNA (mtDNA) of S. moellendorffii is also GC biased (even more so than the ptDNA) and is arguably the most GC-rich organelle genome observed to date—the high GC content of the mtDNA also appears to be influenced by RNA editing. Ultimately, these findings provide convincing support for the earlier proposed theory that the GC content of land-plant organelle DNA is positively correlated and directly connected to levels of organelle RNA editing.  相似文献   

13.
Twenty-eight Bam H 1 restriction fragments were isolated from normal mitochondrial DNA of maize by recombinant DNA techniques to investigate the organization of the mitochondrial genome. Each cloned fragment was tested by molecular hybridization against a Bam digest of total mitochondrial DNA. Using Southern transfers, we identified the normal fragment of origin for d each clone. Twenty-three of the tested clones hybridized only to the fragment from which the clone was derived. In five cases, labeling of an additional band indicated some sequence repetition in the mitochondrial genome. Four clones from normal mitochondrial DNA were found which share sequences with the plasmid-like DNAs, S-1 and S-2, found in S male sterile cytoplasm. The total sequence complexity of the clones tested is 121×106 d (daltons), which approximates two thirds of the total mitochondrial genome (estimated at 183×106 d). Most fragments do not share homology with other fragments, and the total length of unique fragments exceeds that of the largest circular molecules observed. Therefore, the different size classes of circular molecules most likely represent genetically discrete chromosomes in a complex organelle genome. The variable abundance of different mitochondrial chromosomes is of special interest because it represents an unusual mechanism for the control of gene expression by regulation of gene copy number. This mechanism may play an important role in metabolism or biogenesis of mitochondria in the development of higher plants.  相似文献   

14.
15.
A gene (rps2) coding for ribosomal protein S2 (RPS2) is present in the mitochondrial (mt) genome of several monocot plants, but absent from the mtDNA of dicots. Confirming that in dicot plants the corresponding gene has been transferred to the nucleus, a corresponding Arabidopsis thaliana nuclear gene was identified that codes for mitochondrial RPS2. As several yeast and mammalian genes coding for mt ribosomal proteins, the Arabidopsis RPS2 apparently has no N-terminal targeting sequence. In the maize mt genome, two rps2 genes were identified and both are transcribed, although at different levels. As in wheat and rice, the maize genes code for proteins with long C-terminal extensions, as compared to their bacterial counterparts. These extensions are not conserved in sequence. Using specific antibodies against one of the maize proteins we found that a large protein precursor is indeed synthesized, but it is apparently processed to give the mature RPS2 protein which is associated with the mitochondrial ribosome.  相似文献   

16.
Summary Mitochondrial DNA from the yeast strain SR23, tentatively allocated to the species, Candida rhagii, consists of linear molecules 30 kb long. This has been demonstrated by restriction analysis and selective radioactive labelling of terminal restriction fragments. Preliminary sequence analysis indicated that the two ends of the molecule are formed by inverted repeats. The arrangement of several genes in the mitochondrial genome of C. rhagii SR23 was established by specific hybridisation with probes prepared from mitochondrial DNA of Saccharomyces cerevisiae. The arrangement is unique, with genes coding for the two ribosomal RNAs placed widely apart. Intron(s) may be present in the gene coding for cytochrome b.  相似文献   

17.
18.
The positive strand 20S RNA narnavirus persistently infects Saccharomyces cerevisiae. The 20S RNA genome has a single gene that encodes the RNA‐dependent RNA polymerase (p91). 20S RNA forms ribonucleoprotein resting complexes (RNPs) with p91 and resides in the cytoplasm. Here we found no host proteins stoichiometrically associated with the RNP by pull‐down experiments. Furthermore, 20S RNA, when expressed from a vector in Escherichia coli, formed RNPs with p91 in the absence of yeast proteins. This interaction required the 3′ cis signal for complex formation. Moreover, when 23S RNA, the genome of another narnavirus, was expressed in E. coli, it also formed RNPs with its RNA polymerase p104. Finally, when both RNAs were expressed in the same E. coli cell, they formed RNPs only with their cognate RNA polymerases. These results altogether indicate that narnaviruses RNPs consist of only the viral genomes and their cognate RNA polymerases. Because the copy number of the RNPs can be induced almost equivalent to those of rRNAs in some yeast strains, the absence of host proteins may alleviate the burden on the host by not sequestering proteins into the RNPs. It may also contribute to the persistent infection of narnaviruses by decreasing their visibility.  相似文献   

19.
The aim of this study was to examine the physiological and genetic stability of the industrial wine yeasts Saccharomyces cerevisiae and Saccharomyces bayanus var. uvarum under acidic stress during fermentation. The yeasts were sub-cultured in aerobic or fermentative conditions in media with or without l-malic acid. Changes in the biochemical profiles, karyotypes, and mitochondrial DNA profiles were assessed after minimum 50 generations. All yeast segregates showed a tendency to increase the range of compounds used as sole carbon sources. The wild strains and their segregates were aneuploidal or diploidal. One of the four strains of S. cerevisiae did not reveal any changes in the electrophoretic profiles of chromosomal and mitochondrial DNA, irrespective of culture conditions. The extent of genomic changes in the other yeasts was strain-dependent. In the karyotypes of the segregates, the loss of up to 2 and the appearance up to 3 bands was noted. The changes in their mtDNA patterns were much broader, reaching 5 missing and 10 additional bands. The only exception was S. bayanus var. uvarum Y.00779, characterized by significantly greater genome plasticity only under fermentative stress. Changes in karyotypes and mtDNA profiles prove that fermentative stress is the main driving force of the adaptive evolution of the yeasts. l-malic acid does not influence the extent of genomic changes and the resistance of wine yeasts exhibiting increased demalication activity to acidic stress is rather related to their ability to decompose this acid. The phenotypic changes in segregates, which were found even in yeasts that did not reveal deviations in their DNA profiles, show that phenotypic characterization may be misleading in wine yeast identification. Because of yeast gross genomic diversity, karyotyping even though it does not seem to be a good discriminative tool, can be useful in determining the stability of wine yeasts. Restriction analysis of mitochondrial DNA appears to be a more sensitive method allowing for an early detection of genotypic changes in yeasts. Thus, if both of these methods are applied, it is possible to conduct the quick routine assessment of wine yeast stability in pure culture collections depositing industrial strains.  相似文献   

20.
Summary We studied the NAM2 genes of Saccharomyces douglasii and Saccharomyces cerevisiae, and showed that they are interchangeable for all the known functions of these genes, both mitochondrial protein synthesis and mitochondrial mRNA splicing. This confirms the prediction that the S. douglasii NAM2D gene encodes the mitochondrial leucyl tRNA synthetase (EC 6.1.1.4). The observation that these enzymes are interchangeable for their mRNA splicing functions, even though there are significant differences in the intron/exon structure of their mitochondrial genome, suggests that they may have a general role in yeast mitochondrial RNA splicing. A short open reading frame (ORF) precedes the synthetase-encoding ORF, and we showed that at least in S. cerevisiae this is not essential for the expression of the gene; however, it may be involved in a more subtle type of regulation. Sequence comparisons of S. douglasii and S. cerevisiae revealed a particularly interesting situation from the evolutionary point of view. It appears that the two yeasts have diverged relatively recently: there is remarkable nucleotide sequence conservation, with no deletions or insertions, but numerous (albeit non-saturating) silent substitutions resulting from transitions. This applies not only to the NAM2 coding regions, but also to two other ORFs flanking the NAM2 ORF. The regions between the ORFs (believed to be intergenic regions) are much less conserved, with several deletions and insertions. Thus S. douglasii and S. cerevisiae provide an ideal system for the study of molecular evolution, being two yeasts caught in the act of speciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号