首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Carbonate radicals (CO3-) can be formed biologically by the reaction of OH with bicarbonate, the decomposition of the peroxynitrite-carbon dioxide adduct (ONOOCO2-), and enzymatic activities, i.e., peroxidase activity of CuZnSOD and xanthine oxidase turnover in the presence of bicarbonate. It has been reported that the spin-trap DMPO reacts with CO3(-) to yield transient species to yield finally the DMPO-OH spin adduct. In this study, the kinetics of reaction of CO3(-) with DMPO were studied by pulse radiolysis, yielding a second-order rate constant of 2.5 x 10(6) M(-1) s(-1). A Fenton system, composed of Fe(II)-DTPA plus H2O2, generated OH that was trapped by DMPO; the presence of 50-500 mM bicarbonate, expected to convert OH to CO3(-), markedly inhibited DMPO-OH formation. This was demonstrated to be due mainly to a fast reaction of CO3(-) with FeII-DTPA (k=6.1 x 10(8) M(-1) s(-1)), supported by kinetic analysis. Generation of CO3(-) by the Fenton system was further proved by analysis of tyrosine oxidation products: the presence of bicarbonate caused a dose-dependent inhibition of 3,4-dihydroxiphenylalanine with a concomitant increase of 3,3'-dityrosine yields, and the presence of DMPO inhibited tyrosine oxidation, in agreement with the rate constants with OH or CO3(-). Similarly, the formation of CO3(-) by CuZnSOD/H(2)O(2)/bicarbonate and peroxynitrite-carbon dioxide was supported by DMPO hydroxylation and kinetic competition data. Finally, the reaction of CO3(-) with DMPO to yield DMPO-OH was shown in peroxynitrite-forming macrophages. In conclusion, CO3(-) reacts quite rapidly with DMPO and may contribute to DMPO-OH yields in chemical and cellular systems; in turn, the extent of oxidation of other target molecules (such as tyrosine) by CO3(-) will be sensitive to the presence of DMPO.  相似文献   

2.
The lithiation of indole, using a slight excess of n-butyl lithium in THF, followed by methylation and reaction with [Cr(CO)6] in refluxing dibutyl ether, resulted in the formation of [Cr(η6-N-methylindole)(CO)3] (1a) and [Cr(η6-N-methyl-2-methylindole)(CO)3] (1b). In contrast, lithiation of quinoline in THF, silylation and the subsequent reaction with [Cr(CO)6] under similar reaction conditions, afforded [Cr(η6-N-trimethylsilyl-2-butyl-1,2-dihydroquinoline)(CO)3] (2) and [Cr(η6-{2-butyl-1,2,3,4-tetrahydroquinoline})(CO)3] (3). The formation of [Cr(η6-2,2′-bis{N-methylindolyl})(CO)3] (4) implied lithiation at the 2-position of 1a. However, metallation at the 7-position was also indicated during the same reaction. In the presence of [Mn(CO)5Br], product 4 and the transmetallation product [Cr(η6-{7-(N-methylindolyl)Mn(CO)5})(CO)3] (5) were isolated. Reaction with titanocene dichloride gave [Cr(η6-{2-(N-methylindolyl)TiCp2Cl})(CO)3] (6), which slowly converted into [TiCp2{Cr(η6-2-(N-methylindolyl)(CO)3}2] (7).  相似文献   

3.
Formation of Hydrogen and Formate by Ruminococcus albus   总被引:9,自引:2,他引:7       下载免费PDF全文
Radioisotopic growth studies with specifically labeled (14)C-glucose confirmed that Ruminococcus albus, strain 7, ferments glucose mainly by the Embden-Myerhof-Parnas pathway to acetate, ethanol, formate, CO(2), H(2), and an unidentified product. Cell suspensions and extracts converted pyruvate to acetate, H(2), CO(2), and a small amount of ethanol. Formate was not produced from pyruvate and was not degraded to H(2) and CO(2), indicating that formate was not an intermediate in the production of H(2) and CO(2) from pyruvate. Cell extract and (14)C-glucose growth studies showed that the H(2)-producing pyruvate lyase reaction is the major route of H(2) and CO(2) production. An active pyruvate-(14)CO(2) exchange reaction was demonstrable with cell extracts. The (14)C-glucose growth studies indicated that formate, as well as CO(2), arises from the 3 and 4 carbon positions of glucose. A formate-producing pyruvate lyase system was not demonstrable either by pyruvate-(14)C-formate exchange or by net formate formation from pyruvate. Growth studies with unlabeled glucose and labeled (14)CO(2) or (14)C-formate suggest that formate arises from the 3 and 4 carbon positions of glucose by an irreversible reduction of CO(2). The results of the studies on the time course of formate production showed that formate production is a late function of growth, and the rate of production, as well as the total amount produced, increases as the glucose concentration available to the organism increases.  相似文献   

4.
V Rubio  S Grisolia 《Biochemistry》1977,16(2):321-329
This paper demonstrates the formation of "active CO2" (CO2-P), a precursor of carbamoyl phosphate (CP), with frog liver carbamoyl-phosphate synthetase. Absence of ammonia is essential for the demonstration by pulse incubation with H14CO3- of CO2-P. Adenosine triphosphate (ATP) and acetylglutamate are required for the synthesis of CO2-P, which is highly unstable in aqueous solutions (t1/2 = 0.75 s at 24 degrees C at neutral pH). In the absence of ammonia, CO2-P attains rapidly a steady-state level, which depends on the concentration of ATP and HCO3-. The "apparent KM'S" are approximately equal to those found for the adenosine triphosphate (ATPase) activity of the enzyme. The maximum level of CO2-P is limited by the amount of enzyme, and approximates 4 mol of intermediate/mol of enzyme. The unprotonated form of ammonia seems to be the species reacting with CO2-P to produce CP. The reaction of CO2-P and NH3 is very fast (rate constant kn = 8 x 10(4) M-1 S-1) and does not consume free ATP. Therefore, the 2 mol of ATP necessary for CP synthesis binds or reacts with the enzyme and/or CO2 prior to reaction with NH3. The reaction of CO2-P with NH3 also takes place in acetone under conditions at which the enzyme is not active, suggesting little or no assistance from enzyme catalysis or that a part of the catalytic site is "frozen" by the solvent in the active conformation. In the light of these and other findings, a new scheme is proposed for the mechanism of frog liver carbamoyl-phosphate synthetase and some considerations are made on the chemical nature of the intermediate and on the possible evolutionary significance of the reaction of CO2-P with NH3 in acetone.  相似文献   

5.
1. The attachment of the cercaria to artificial substrates (offered via dialyzing membranes) in definite media was investigated under conditions of variable pH and [CO2]. 2. A decrease of the pH of the substrate releases only attachments in CO2 containing media and consequently acts via CO2 systems of the medium. 3. As effective components of CO2 systems, dissolved CO2 + H2CO3 are confirmed. 4. The sensitivity of the reaction on gradients of the CO2 partial pressure (in solution) could be established by offering substrates with lowered pH in CO2 containing media. Thus, by raising the CO2 partial pressure from ca. 0,04% to 0,15% maximal fixation rates were obtained (Fig. 3). 5. The carboanhydrase inhibitor acetazolamide, when added to the medium, had no direct influence on the CO2 receptors.  相似文献   

6.
The enthalpies of reaction of HMo(CO)3C5R5 (R = H, CH3) with diphenyldisulfide producing PhSMo(CO)3C5R5 and PhSH have been measured in toluene and THF solution (R = H, ΔH= −8.5 ± 0.5 kcal mol−1 (tol), −10.8 ± 0.7 kcal mol−1 (THF); R = CH3, ΔH = −11.3±0.3 kcal mol−1 (tol), −13.2±0.7 kcal mol−1 (THF)). These data are used to estimate the Mo---SPh bond strength to be on the order of 38–41 kcal mol−1 for these complexes. The increased exothermicity of oxidative addition of disulfide in THF versus toluene is attributed to hydrogen bonding between thiophenol produced in the reaction and THF. This was confirmed by measurement of the heat of solution of thiophenol in toluene and THF. Differential scanning calorimetry as well as high temperature calorimetry have been performed on the dimerization and subsequent decarbonylation reactions of PhSMo(CO)3Cp yielding [PhSMo(CO)2Cp]2 and [PhSMo(CO)Cp]2. The enthalpies of reaction of PhSMo(CO)3Cp and [PhSMo(CO)2Cp]2 with PPh3, PPh2Me and P(OMe)3 have also been measured. The disproportionation reaction: 2[PhSMo(CO)2Cp]2 → 2PhSMo(CO)3Cp + [PhSMP(CO)Cp]2 is reported and its enthalpy has also been measured. These data allow determination of the enthalpy of formation of the metal-sulfur clusters [PhSMo(CO)nC5H5]2, N = 1,2.  相似文献   

7.
Reduced ferredoxin:CO2 oxidoreductase (CO2 reductase) from Clostridium pasteurianum catalyzes the reduction of 'CO2' to formate with reduced ferredoxin, an isotopic exchange between 'CO2' and formate in the absence of ferredoxin, and the oxidation of formate to 'CO2' with oxidized ferredoxin. The active species of 'CO2', i.e. CO2 or HCO3 (H2CO3), utilized by the enzyme was determined. The method employed for the species identification was that of Copper et al. (1968). Both 'CO2' reduction to formate and the exchange reaction were studied. Data were obtained which are compatible with those expected if CO2 is the active species. The V and the dissociation constant Ks of the enzyme - CO2 complex in dependence of pH were determined from initial velocity studies of the exchange reaction. V was found to be only slightly affected by pH between 5.5 and 7.5. Ks was markedly dependent on pH; the constant increased with decreasing pH from 0.2 mM at pH 7.5 to 3 mM at pH 5.5.  相似文献   

8.
Kinetics of the reaction of peroxynitrite with ferric cytochrome c in the absence and presence of bicarbonate was studied. It was found that the heme iron in ferric cytochrome c does not react directly with peroxynitrite. The rates of the absorbance changes in the Soret region of cytochrome c spectrum caused by peroxynitrite or peroxynitrite/bicarbonate were the same as the rate of spontaneous isomerization of peroxynitrite or as the rate of the reaction of peroxynitrite with bicarbonate, respectively. This means that intermediate products of peroxynitrite decomposition, (.)OH/(.)NO(2) or, in the presence of bicarbonate, CO(3)(-)(.)/(.)NO(2), are the species responsible for the absorbance changes in the Soret band of cytochrome c. Modifications of the heme center of cytochrome c by radiolytically produced radicals, (.)OH, (.)NO(2) or CO(3)(-)(.), were also studied. The absorbance changes in the Soret band caused by radiolytically produced (.)OH or CO(3)(-)(.) were much more significant that those observed after peroxynitrite treatment, compared under similar concentrations of radicals. (.)NO(2) produced radiolytically did not interact with the heme center of cytochrome c. Cytochrome c exhibited an increased peroxidase-like activity after reaction with peroxynitrite as well as with radiolytically produced (.)OH, (.)NO(2) or CO(3)(-)(.) radicals. This means that modification of protein structure: oxidation of amino acids and/or tyrosine nitration, facilitates reaction of H(2)O(2) with the heme iron of cytochrome c, followed by reaction with the second substrate.  相似文献   

9.
The reaction between carboxyhemoglobin and reduced microperoxidase (MP): Hb4(CO)4 + 4MP=Hb4 + 4MPCO, recently reported by us, has been further studied. By generating species Hb4(CO), Hb4(CO)2, and Hb(CO)3 in the stopped flow cuvette by the reaction of dithionite with the species of the general formula Hb4(O2)x(CO)y(x + y=4) in the presence of microperoxidase it has been possible to determine the stepwise CO dissociation rate constants l4, l3, l2, and l1. The overall CO dissociation rate constant l, which is the same in this system as l4, is not affected by 2,3-diphosphoglyceric acid. The activation energy of the reaction is 21,400 cal in 15-25 degrees range. The ratio deltal/deltapH is approximately 3 in 6.5 to 7.5 pH range. The kinetic data indicate that, compared to HbO2, the contribution to the cooperativity of the dissociation rate constants of carboxyhemoglobin is greatly reduced. The ligand-dependent differences in the reactions of Hb with CO, O2, and NO suggest that in the combination reactions the ligand plays an active role in the rate-limiting step.  相似文献   

10.
2-Deoxy-2-fluorosalacinol and a 1,2-ene derivative of the naturally occurring glycosidase inhibitor salacinol were synthesized for structure activity studies with human maltase glucoamylase (MGA). 2-Deoxy-2-fluorosalacinol was synthesized through the coupling reaction of 2-deoxy-2-fluoro-3,5-di-O-p-methoxybenzyl-1,4-anhydro-4-thio-D-arabinitol with 2,4-O-benzylidene-l-erythritol-1,3-cyclic sulfate in hexafluoroisopropanol (HFIP) containing 0.3 equiv of K(2)CO(3). Excess of K(2)CO(3) resulted in the elimination of HF from the coupled product, and the formation of an alkene derivative of salacinol. Nucleophilic attack of the 1,4-anhydro-4-thio-D-arabinitol moiety on the cyclic sulfate did not proceed in the absence of K(2)CO(3). No reaction was observed in acetonitrile containing K(2)CO(3). The target compounds were obtained by deprotection with TFA. The 2-deoxy-1-ene derivative of salacinol and 2-deoxy-2-fluorosalacinol inhibited recombinant human maltase glucoamylase, one of the key intestinal enzymes involved in the breakdown of glucose, with an IC(50) value of 150 microM and a K(i) value of 6+/-1 microM, respectively.  相似文献   

11.
Possible mechanisms for the silylformylation of 1-alkynes catalyzed by Rh2Co2(CO)12 are investigated. Novel Rh-Co mixed metal complexes, (PhMe2Si)2Rh(CO)nCo(CO)4 (n = 2 or 3) (3) and RhCo(HC≡CBun)(CO)5 (5), are found to play important roles in this catalysis. The reaction of 3 with 1-hexyne and HSiMe2Ph at ambient temperature and pressure of CO gives n-BuC(CHO)=CHSiMe2Ph (1a, Z/E = 95/5), (PhMe2Si)2Rh(CO)3Co(CO)4 (3-B) and an Rh-Co mixed metal butterfly complex, h2Co2(HC≡CBun)(CO)10 (4). The reaction of 5 with 1-hexyne and HSiMe2Ph under the same ambient conditions affords 1a (100% Z) very cleanly as the sole reaction product. The crossover experiments u sing RhCo(DC≡CBun)(CO)5(5-d), 1-hexyne-1d and DSiMe2Ph strongly support the mixed metal bimetallic catalysis and involvement of bis(alkyne)-Rh-Co species. The most plausible catalytic cycle of silylformylation which can accommodate all the observed results is proposed.  相似文献   

12.
Peroxynitrite (ONOO(((-)))/ONOOH) is expected in vivo to react predominantly with CO(2), thereby yielding NO(2)(.) and CO(3) radicals. We studied the inhibitory effects of ascorbate on both NADH and dihydrorhodamine 123 (DHR) oxidation by peroxynitrite generated in situ from 3-morpholinosydnonimine N-ethylcarbamide (SIN-1). SIN-1 (150 micrometer)-mediated oxidation of NADH (200 micrometer) was half-maximally inhibited by low ascorbate concentrations (61-75 micrometer), both in the absence and presence of CO(2). Control experiments performed with thiols indicated both the very high antioxidative efficiency of ascorbate and that in the presence of CO(2) in situ-generated peroxynitrite exclusively oxidized NADH via the CO(3) radical. This fact is attributed to the formation of peroxynitrate (O(2)NOO(-)/O(2)NOOH) from reaction of NO(2)(.) with O(2), which is formed from reaction of CO(3) with NADH. SIN-1 (25 micrometer)-derived oxidation of DHR was half-maximally inhibited by surprisingly low ascorbate concentrations (6-7 micrometer), irrespective of the presence of CO(2). Control experiments performed with authentic peroxynitrite revealed that ascorbate was in regard to both thiols and selenocompounds much more effective to protect DHR. The present results demonstrate that ascorbate is highly effective to counteract the oxidizing properties of peroxynitrite in the absence and presence of CO(2) by both terminating CO(3)/HO( small middle dot) reactions and by its repair function. Ascorbate is therefore expected to act intracellulary as a major peroxynitrite antagonist. In addition, a novel, ascorbate-independent protection pathway exists: scavenging of NO(2)(.) by O(2) to yield O(2)NOO(-), which further decomposes into NO(2)(-) and O(2).  相似文献   

13.
Consumption and production of atmospheric CO was measured under field conditions in three different types of soil. CO was consumed by an apparent first-order reaction and produced by an apparent zero-order reaction, resulting in a dynamic equilibrium with the consumption of atmospheric CO as the net reaction. CO consumption was higher in summer than in winter. Laboratory experiments on five different soil types showed that CO consumption was strongly inhibited by the presence of streptomycin or cycloheximide (Actidione), or both. Thus, eucaryotic as well as procaryotic microorganisms were apparently responsible for the observed CO consumption. The aerobic carboxydobacterium Pseudomonas carboxydovorans added to sterile soil was able to utilize the low amounts (ca. 0.7 ppmv) of CO present in laboratory air. CO was consumed by soil under aerobic as well as anaerobic conditions. Anaerobic preincubation of the soil stimulated the anaerobic CO consumption and reduced the aerobic CO consumption. In contrast to CO consumption, CO production was stimulated by autoclaving, by ultraviolet-irradiation, by fumigation with NH3 or CHCl3, by treatment with streptomycin or cycloheximide or both, by addition of NaCN, NaN3, or Na2HAsO4 (or all three) in the presence of glucose under an atmosphere of pure oxygen, or by a drying and rewetting procedure. The consumption of atmospheric CO by soil is a microbial process, but the production of CO is apparently not a metabolic process.  相似文献   

14.
Lung carbonic anhydrase (CA) participates directly in plasma CO2-HCO3(-)-H+ reactions. To characterize pulmonary CA activity in situ, CO2 excretion and capillary pH equilibration were examined in isolated saline-perfused rat lungs. Isolated lungs were perfused at 25, 30, and 37 degrees C with solutions containing various concentrations of HCO3- and a CA inhibitor, acetazolamide (ACTZ). Total CO2 excretion was partitioned into those fractions attributable to dissolved CO2, uncatalyzed HCO3- dehydration, and catalyzed HCO3- dehydration. Approximately 60% of the total CO2 excretion at each temperature was attributable to CA-catalyzed HCO3- dehydration. Inhibition of pulmonary CA diminished CO2 excretion and produced significant postcapillary perfusate pH disequilibria, the magnitude and time course of which were dependent on temperature and the extent of CA inhibition. The half time for pH equilibration increased from approximately 5 s at 37 degrees C to 14 s at 25 degrees C. For the HCO3- dehydration reaction, pulmonary CA in situ displayed an apparent inhibition constant for ACTZ of 0.9-2.2 microM, a Michaelis-Menten constant of 90 mM, a maximal reaction velocity of 9 mM/s, and an apparent activation energy of 3.0 kcal/mol.  相似文献   

15.
The preparation and reaction chemistry of 1,3- and 1,2-diene and related complexes derived from metal carbonyl containing anions and allenic electrophiles are addressed. The preparation of some CpFe(CO)2 η1-diene complexes and their conversion into CpFe(CO) η3-diene complexes is presented followed by reactions of CpMo(CO)3, CpW(CO)3 and CpMo(CO)2PR3 anions with allenic electrophiles which produce metal complexed cyclobutenones (via CO and alkene insertions from the initially formed product) and 1,2-diene complexes, respectively. Lastly, the reactions of PPh3(CO)3Co anions with allenic electrophiles are outlined which result in several different coordination geometries depending on the reaction conditions used.  相似文献   

16.
The log P value of pressurized CO(2) at 50 degrees C was determined from the solubility of 1-octanol in CO(2) and compared with other solvent parameters such as permittivity, epsilon, and polarity parameter, E(T)(30). The log P indicated that pressurized CO(2) is rather hydrophilic although it seems hydrophobic being judged from epsilon(r) and E(T)(30). With a change in pressure from 3 to 11.8 MPa, the log P changed from 0.9 to 2.0 while epsilon(r) and E(T)(30) changed only slightly. The log P was linearly correlated to the logarithm of the solubility of water among organic solvents. Pressurized CO(2) was located close to the linear correlation line among the solvents at high pressure (>11 MPa) but its location deviated to the hydrophilic side with a decrease in pressure. Lipase-catalyzed esterification of stearic acid with ethanol and hydrolysis of ethyl stearate were carried out in pressurized CO(2), benzene (log P = 2.0), and n-hexane (log P = 3.5). In spite of the lowest log P value for CO(2), the reaction rate in CO(2) was the highest among solvents tested in pressure range over 10 MPa. The reaction rate was strongly dependent on pressure of CO(2).  相似文献   

17.
Ribulose-1,5-bisphosphate carboxylase/oxygenase [Rbu(1,5)P2CO] from plant sources shows a biphasic reaction course when assayed with more than 2 mM ribulose 1,5-bisphosphate [Rbu(1,5)P2]. In the burst, Rbu(1,5)P2CO has its substrate-binding sites occupied with Rbu(1,5)P2 for the initial few minutes, then both substrate-binding and regulatory sites are occupied by Rbu(1,5)P2 in the subsequent linear phase, at physiological concentrations of Rbu(1,5)P2 [A. Yokota (1991) J. Biochem. (Tokyo) 110, 246-252]. This study attempts the characterization of spinach Rbu(1,5)P2CO carrying Rbu(1,5)P2 at the regulatory sites and the interaction of Rbu(1,5)P2CO activase with Rbu(1,5)P2CO purified with poly(ethylene glycol) 4000 without denaturation. Binding of Rbu(1,5)P2 to the regulatory sites strongly influences the temperature dependence of the carboxylase activity of Rbu(1,5)P2CO. The activation energy of Rbu(1,5)P2CO with Rbu(1,5)P2 at the regulatory sites was 40% larger than that without Rbu(1,5)P2 over 30 degrees C, although the binding did not affect the activation energy below this temperature. This caused the almost linear reaction course of the carboxylase reaction at 50 degrees C. The optimum pH for the activity of Rbu(1,5)P2CO carrying Rbu(1,5)P2 at the sites was 8.0-8.2, and increased by about pH 0.2 from that of Rbu(1,5)P2CO without Rbu(1,5)P2. The ratio of the activity of the former form to that of the latter increased with increasing pH with an inflection point at pH 8.1. The increase in the ratio was accompanied by a decrease in the hysteric conformational change of Rbu(1,5)P2CO. The ATP-hydrolyzing activity inherent to Rbu(1,5)P2CO activase was stimulated about twofold by 3-5 mM Rbu(1,5)P2. Rbu(1,5)P2CO in the inactive complex with Rbu(1,5)P2 experienced hysteresis and bound Rbu(1,5)P2 at the regulatory sites during activation in the presence of Rbu(1,5)P2CO activase. Evidence was obtained that Rbu(1,5)P2CO activase promoted the activation of Rbu(1,5)P2CO through binding to the large subunits of Rbu(1,5)P2CO.  相似文献   

18.
The reaction of cis-[Os(CO)4Me2] with Me3NO in the THF or MeCN yields the complexes fac-[Os(CO)3(L)Me2] (where L = THF or MeCN). Whereas the THF complex is unstable and only characterised spectroscopically, fac-[Os(CO)3(MeCN)Me2] has been isolated as a white solid and fully characterized by both analytical and spectroscopic methods. These complexes fac-[Os(CO)3(L)Me2] are shown to be useful intermediates. Thus, reaction with PPh3 gives fac-[Os(CO)3(PPh3)Me2] in good yield.Reactions of fac-[Os(CO)3(L)Me2] (L = CO or MeCN) with CPh3PF6 or B(C6F5)3 have been investigated. Whereas cis-[Os(CO)4Me2] showed no reaction with either CPh3PF6 or B(C6F5)3, the reaction of fac-[Os(CO)3(MeCN)Me2] with CPh3PF6 in CH2Cl2 occurred over 16 h at room temperature to give an unstable cationic product and CPh3Me. The reaction was monitored by both IR and NMR spectroscopies. When this reaction of fac-[Os(CO)3(MeCN)Me2] was carried out in the presence of a trapping ligand such as MeCN, the stable cationic product [Os(CO)3(MeCN)2Me]+ could be isolated and identified spectroscopically.  相似文献   

19.
A series of tetrakis(trimethylsilylethyne) derivatives of Group 14 metals (2–4) was prepared. Co2(CO)6 complexes 5–10 were synthesised by the reaction of 2–4 with Co2(CO)8. From the silyl and germyl based compounds 2 and 3, either one or two alkynes could be complexed with Co2(CO)6. In contrast, the tin derived compound 4 could accommodate up to four Co2(CO)6 complexes. The longest wavelength UV-Vis absorbances of the silicon and germanium-based complexes were consistent with multiple, non-conjugated Co2(CO)6 chromophores. The tetrakis Co2(CO)6 complex 10, however, absorbs at a much longer wavelength suggesting conjugation of Co2(CO)6 complexes through the tin. The reactivity towards protonolysis of the uncomplexed alkynes 2–4 is a consequence of the hyperconjugative stabilisation of the intermediate β-vinyl cation (the β-effect): Sn(CCSiMe3)3>SnOTf(CCSiMe3)2>SiMe3>Ge(CCSiMe3)3. The reactivity of the Co2(CO)6 complexes, however, was quite different from the reactions of 2–4 and from analogous all-carbon systems. Treatment of 5–10 with strong acid led neither to protiodemetallation of the complexed or non-complexed alkynes but to decomplexation of the cobalt. Similarly, ligand metathesis reactions between 10 and Ph2SiCl2 were not observed. The normal reactivity of silylalkynes towards electrophiles, which was expected to be enhanced by the presence of the cobalt complex, was diminished by the particular steric environment of the molecules under examination (5–10). As a result, the favoured reaction under these conditions was decomplexation of the cobalt.  相似文献   

20.
Cell suspensions of methanogenic bacteria (Methanosarcina barkeri, Methanospirillum hungatei, Methano-brevibacter arboriphilus, and Methanobacterium thermoautotrophicum) were found to form CO from CO2 and H2 according to the reaction: CO2 + H2----CO + H2O; delta G0 = +20 kJ/mol. Up to 15,000 ppm CO in the gas phase were reached which is significantly higher than the equilibrium concentration calculated from delta G0 (95 ppm under the experimental conditions). This indicated that CO2 reduction with H2 to CO is energy-driven and indeed the cells only generated CO when forming CH4. The coupling of the two reactions was studied in more detail with acetate-grown cells of M. barkeri using methanogenic substrates. The effects of the protonophore tetrachlorosalicylanilide (TCS) and of the proton-translocating ATPase inhibitor N,N'-dicyclohexylcarbodiimide (cHxN)2C were determined. TCS completely inhibited CO formation from CO2 and H2 without affecting methanogenesis from CH3OH and H2. In the presence of the protonophore the proton motive force delta p and the intracellular ATP concentration were very low. (cHxN)2C, which partially inhibited methanogenesis from CH3OH and H2, had no effect on CO2 reduction to CO. In the presence of (cHxN)2C delta p was high and the intracellular ATP content was low. These findings suggest that the endergonic formation of CO from CO2 and H2 is coupled to the exergonic formation of CH4 from CH3OH and H2 via the proton motive force and not via ATP. CO formation was not stimulated by the addition of sodium ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号