首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two types of smooth muscle myosin heavy chain (MHC) isoforms, SM1 and SM2, were recently identified to have different carboxyl termini (Nagai, R., Kuro-o, M., Babij, P., and Periasamy, M. (1989) J. Biol. Chem. 264, 9734-9737). SM1 and SM2 are considered to be generated from a single gene through alternative RNA splicing. In this study we investigated expression of vascular MHC isoforms during development in rabbits at the mRNA, protein, and histological levels. In adults, all smooth muscle cells reacted with both anti-SM1 and anti-SM2 antibodies on immunofluorescence, suggesting the coexpression of SM1 and SM2 in a single cell. In fetal and perinatal rabbits, however, only anti-SM1 antibody consistently reacted with smooth muscles. Reactivity with anti-SM2 antibody was negative in the fetal and neonatal blood vessels and gradually increased during 30 days after birth. These developmental changes in SM1 and SM2 expression at the histological level coincided with mRNA expression of each MHC isoform as determined by S1 nuclease mapping, indicating that expression of SM1 and SM2 is controlled at the level of RNA splicing. However, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of myosin from fetal and perinatal aortas revealed the presence of large amount of SM2. Interestingly, fetal SM2 did not cross-react with our anti-SM2 antibody on immunoblotting. We conclude that expression of SM1 and SM2 are differentially regulated during development and that a third type of MHC isoform may exist in embryonic and perinatal vascular smooth muscles.  相似文献   

2.
Vertebrate smooth muscle myosin heavy chains (MHCs) exist as two isoforms with molecular masses of 204 and 200 kDa (MHC204 and MHC200) that are generated from a single gene by alternative splicing of mRNA (Nagai, R., Kuro-o, M., Babij, P., and Periasamy, M. (1989) J. Biol. Chem. 264, 9734-9737). A dimer of two MHCs associated with two pairs of myosin light chains forms a functional myosin molecule. To investigate the isoform composition of the MHCs in native myosin, antibodies specific for MHC204 were generated and used to immunoprecipitate purified bovine aortic smooth muscle myosin from a solution containing equal amounts of each isoform. MHC204 quantitatively removed from this mixture was completely free of MHC200. Immunoprecipitation of the supernatant with an antiserum that recognizes both isoforms equally well revealed that only MHC200 remained. We conclude that only homodimers of MHC204 and MHC200 exist under these conditions. A method is described for the purification of enzymatically active MHC204 and myosin on a protein G-agarose high performance liquid chromatography column containing immobilized MHC204 antibodies. We show, using an in vitro motility assay, that the movement of actin filaments by myosin containing 204-kDa heavy chains (0.435 +/- 0.115 microns/s) was not significantly different from that of myosin containing 200-kDa heavy chains (0.361 +/- 0.078 microns/s) or from myosin containing equal amounts of each heavy chain isoform (0.347 +/- 0.082 microns/s).  相似文献   

3.
Rabbit smooth muscles contain at least three types of myosin heavy chain (MHC) isoforms; SM1, SM2 and SMemb (NMHC-B), the expression of which is developmentally regulated. We have recently reported that smooth muscles with the embryonic phenotype accumulate in the neointimas produced by endothelial denudation or high-cholesterol feeding. In this study, we examined MHC isoform expression in the neointimas and the media of poststenotic dilatation of the rabbit carotid artery, and determined the phenotype of the smooth muscle cell in the dilated segment. We report here that neointimal cells in the dilated segment are smooth muscle cells with the embryonic phenotype as previously reported in our ballooning-injury study. The medial smooth muscles, however, are composed of heterogeneous population of smooth muscles which differ in stage of differentiation as determined by the MHC isoform expression. These results indicate that MHC isoforms are useful molecular markers to identify abnormally proliferating smooth muscles in diseased arteries and to understand the process of atherogenesis occurring following vascular injury.  相似文献   

4.
The heavy chain of smooth muscle myosin was found to be phosphorylated following immunoprecipitation from cultured bovine aortic smooth muscle cells. Of a variety of serine/threonine kinases assayed, only casein kinase II and calcium/calmodulin-dependent protein kinase II phosphorylated the smooth muscle myosin heavy chain to a significant extent in vitro. Two-dimensional maps of tryptic peptides derived from heavy chains phosphorylated in cultured cells revealed one major and one minor phosphopeptide. Identical tryptic peptide maps were obtained from heavy chains phosphorylated in vitro with casein kinase II but not with calcium/calmodulin-dependent protein kinase II. Of note, the 204-kDa smooth muscle myosin heavy chain but not the 200-kDa heavy chain isoform was phosphorylated by casein kinase II. Partial sequence of the tryptic phosphopeptides generated following phosphorylation by casein kinase II yielded Val-Ile-Glu-Asn-Ala-Asp-Gly-Ser*-Glu-Glu-Glu-Val. The Ser* represents the Ser(PO4) which is in an acidic environment, as is typical for casein kinase II phosphorylation sites. By comparison with the deduced amino acid sequence for rabbit uterine smooth muscle myosin (Nagai, R., Kuro-o, M., Babij, P., and Periasamy, M. (1989) J. Biol. Chem. 264, 9734-9737), we have localized the phosphorylated serine residue to the non-helical tail of the 204-kDa isoform of the smooth muscle myosin heavy chain. The ability of the 204-kDa isoform, but not the 200-kDa isoform, to serve as a substrate for casein kinase II suggests that these two isoforms can be regulated differentially.  相似文献   

5.
We explored the hypothesis that discrepancies in the literature concerning the nature of myosin expression in cultured smooth muscle cells are due to the appearance of a new form of myosin heavy chain (MHC) in vitro. Previously, we used a very porous sodium dodecyl sulfate gel electrophoresis system to detect two MHCs in intact smooth muscles (SM1 and SM2) which differ by less than 2% in molecular weight (Rovner, A. S., Thompson, M. M., and Murphy, R. A. (1986) Am. J. Physiol. 250, C861-C870). Myosin-containing homogenates of rat aorta cells in primary culture were electrophoresed on this gel system, and Western blots were performed using smooth muscle-specific and nonmuscle-specific myosin antibodies. Subconfluent, rapidly proliferating cultures contained a form of heavy chain not found in rat aorta cells in vivo (NM) with electrophoretic mobility and antigenicity identical to the single unique heavy chain seen in nonmuscle cells. Moreover, these cultures expressed almost none of the smooth muscle heavy chains. In contrast, postconfluent growth-arrested cultures expressed increased levels of the two smooth muscle heavy chains, along with large amounts of NM. Analysis of cultures pulsed with [35S] methionine indicated that subconfluent cells were synthesizing almost exclusively NM, whereas postconfluent cells synthesized SM1 and SM2 as well as larger amounts of NM. Similar patterns of MHC content and synthesis were found in subconfluent and postconfluent passaged cells. These results show that cultured vascular smooth muscle cells undergo differential expression of smooth muscle- and nonmuscle-specific MHC forms with changes in their growth state, which appear to parallel changes in expression of the smooth muscle and nonmuscle forms of actin (Owens, G. K., Loeb, A., Gordon, D., and Thompson, M. M. (1986) J. Cell Biol. 102, 343-352). The reappearance of the smooth muscle MHCs in postconfluent cells suggests that density-related growth arrest promotes cytodifferentiation, but the continued expression of the nonmuscle MHC form in these smooth muscle cells indicates that other factors are required to induce the fully differentiated state while in culture.  相似文献   

6.
Diabetes mellitus (DM) is a quite common chronic disease, and the prevalence of erectile dysfunction (ED) is three times higher in this large population. Although diabetes-related ED has been studied extensively, the actin-myosin contractile apparatus was not examined. The mRNAs encoding smooth muscle myosin (SMM) heavy chains (MHC) and essential light chains (LC(17)) exist as several different alternatively spliced isoforms with distinct contractile properties. Recently, we provided novel data that blebbistatin (BLEB), a specific myosin II inhibitor, potently relaxed corpus cavernosum smooth muscle (CCSM). In this study, we examine whether diabetes alters SMM expression, alternative splicing, and/or functional activities, including sensitivity to BLEB. By using streptozotocin (STZ)-induced 2-mo diabetic rats, functional activities were tested in vivo by intracavernous pressure (ICP) recording during cavernous nerve stimulation and in vitro via organ bath contractility studies. SMM isoform composition was analyzed by competitive RT-PCR and total SMM, myocardin, and embryonic SMM (SMemb) expression by real-time RT-PCR. Results revealed that the blood glucose level of STZ rats was 407.0 vs. 129.5 mg/dl (control). STZ rats exhibited ED confirmed by significantly increased CCSM contractile response to phenylephrine and decreased ICP response. For STZ rats, SM-B, LC(17a) and SM2 isoforms, total SMM, and myocardin expression increased, whereas SM-A, LC(17b), and SM1 isoforms were decreased, with SMemb unchanged. BLEB was significantly more effective in relaxing STZ CCSM both in vitro and in vivo. Thus we demonstrated a novel diabetes-specific effect on alternative splicing of the SMM heavy chain and essential light chain genes to a SMM isoform composition favoring a heightened contractility and ED. A switch to a more contractile phenotype was supported further by total SMM expression increase. Moreover, the change in CCSM phenotype was associated with an increased sensitivity to BLEB, which may serve as a novel pharmacotherapy for ED.  相似文献   

7.
It has been proposed that the carboxyl terminus of the smooth muscle myosin light chain kinase is expressed as an independent protein. This protein has been purified from tissues and named telokin (Ito, M., Dabrowska, R., Guerriero, V., Jr., and Hartshorne, D. J. (1989) J. Biol. Chem. 264, 13971-13974). In this study we have isolated and characterized cDNA and genomic clones encoding telokin. Analysis of a genomic DNA clone suggests that the mRNA encoding telokin arises from a promoter which appears to be located within an intron of the smooth muscle myosin light chain kinase (MLCK) gene. This intron interrupts exons encoding the calmodulin binding domain of the kinase. The amino acid sequence deduced from the cDNA predicts that telokin is identical to the carboxyl-terminal 155 residues of the smooth muscle MLCK. Unlike the smooth muscle MLCK which is expressed in both smooth and non-muscle tissues, telokin is expressed in some smooth muscle tissues but has not been detected in aortic smooth muscle or in any non-muscle tissues.  相似文献   

8.
Mouse embryonic mesenchymal cells undergo spontaneous smooth muscle (SM) differentiation upon spreading/elongation in culture (Relan et al., J. Cell Biol. 147 (1999) 1341; Yang et al., Development 125 (1998) 2621; Yang et al., Development 126 (1999) 3027). Using these cells we generated a subtracted cDNA library to identify potential suppressors of SM myogenesis. One of the differentially expressed genes was heterogeneous nuclear ribonucleoprotein-H (hnRNP-H), which is involved in pre-mRNA alternative splicing. hnRNP-H was highly expressed in mesenchymal cells prior to the onset of SM differentiation, but its expression rapidly decreased in mesenchymal cells undergoing SM myogenesis. In vivo, the drop in hnRNP-H expression was restricted to visceral SM cells. Antisense oligodeoxynucleotide and antisense RNA were used to inhibit hnRNP-H synthesis in SM-differentiating mesenchymal cells and in embryonic lung explants. A decrease in hnRNP-H levels resulted in upregulation of SM-specific gene expression and increased bronchial SM development in lung explants. hnRNP-H overexpression in cell cultures had the opposite effect. These studies, therefore, indicate a novel role for hnRNP-H in the control of visceral myogenesis.  相似文献   

9.
The recent discovery of free oligosaccharides typical for the complex type of glycan chains terminating with a free di-N-acetylchitobiosyl structure in certain fish eggs and early embryos (Ishii, K., Iwasaki, M., Inoue, S., Kenny, P. T. M., Komura, H., and Inoue, Y. (1989) J. Biol. Chem. 264, 1623-1630; Seko, A., Kitajima, K., Iwasaki, M., Inoue, S., and Inoue, Y. (1989) J. Biol. Chem. 264, 15922-15929; Inoue, S., Iwasaki, M., Ishii, K., Kitajima, K., and Inoue, Y. (1989) J. Biol. Chem. 264, 18520-18526) led us to find an enzyme responsible for detachment of N-linked glycan chains from glycoproteins by hydrolyzing the beta-aspartyl-glucosylamine linkage in Oryzias latipes embryos. The enzyme, peptide-N4-(N-acetyl-beta-glucosaminyl) asparagine amidase or peptide:N-glycosidase (PNGase), was partially (2090-fold) purified, and the reaction site at which this enzyme acts was specified by analysis and identification of the reaction products. This is the first demonstration showing PNGase in animal sources, although the presence of PNGases was reported in a variety of plant extracts and bacteria. Thus, the commonality of this type of enzyme is now demonstrated, and the possible physiological role of PNGase in de-N-glycosylation as a basic biologic process is proposed.  相似文献   

10.
Calponin is a basic smooth-muscle-specific protein capable of binding to F-actin, tropomyosin and calmodulin in vitro. Using two-dimensional gel electrophoresis, we show that calponin exists as multiple isoelectric variants in avian and mammalian tissues. During chick embryogenesis, one isoform is expressed in gizzard that shows a pI identical to the most basic adult alpha variant; around 10 d after hatching multiple isoforms then appear. SM 22 [Pearlstone, J. R., Weber, M., Lees-Miller, J. P., Carpenter, M. R. & Smillie, L. B. (1987) J. Biol. Chem. 262, 5985-5991], which has sequence-motifs related to calponin, displays a similar isoform pattern during development; one isoform (alpha) is present in the embryo and three in the adult. In living smooth-muscle strips from chicken gizzard and guinea pig taenia coli, labelled with 32PO4, no phosphate incorporation could be detected in any of the calponin or SM 22 isoforms during either contraction or relaxation. From the additional observation that antibodies against phosphoserine also failed to label calponin and SM 22 in two-dimensional gel immunoblots, we conclude that the multiple isoforms do not arise via differential phosphorylation. These results support the claim [Barany, M., Rokolya, A. & Barany, K. (1991) FEBS Lett. 279, 65-68] that calponin phosphorylation is not involved in smooth muscle regulation in vivo, as has been suggested from in vitro studies [Winder, S. J. & Walsh, M. J. (1990) J. Biol. Chem. 265, 10148-10155]. In vitro translation of porcine and chicken smooth-muscle mRNA produced only a single (alpha) isoform of calponin, suggesting that the adult isoforms do not derive from multiple gene products; in the same assay two polypeptides appeared in the position of SM 22, one corresponding to the alpha isoform and a second more basic spot, not observed in tissue samples. Whereas calponin and SM 22 appear synchronously during smooth muscle differentiation in vivo, SM 22 is not fully down-regulated like calponin, metavinculin and heavy-caldesmon in smooth muscle cells in culture, pointing to a differential regulation of expression of the alpha SM 22 isoform during smooth-muscle phenotype modulation in vitro.  相似文献   

11.
12.
Previous studies have demonstrated that rat aortic smooth muscle cells (SMC) show marked changes in smooth muscle (SM) alpha-actin content and fractional synthesis as a function of cell density and growth (Owens, G. K., Loeb, A., Gordon, D., and Thompson, M. M. (1986) J. Cell Biol. 102, 343-352; Blank, R., Thompson, M. M., and Owens, G. K. (1988) J. Cell Biol. 107, 299-306). Results of this study show that, although there is a 6-fold increase in SM alpha-actin content in postconfluent density arrested cultures as compared to proliferating subconfluent cultures, SM alpha-actin mRNA levels are not different between these cells. This suggests that the SM alpha-actin gene is constitutively active under both of these conditions and that accumulation of SM alpha-actin in postconfluent cells is due to translational and/or post-translational controls. The relationship between growth and cytodifferentiation was further explored by examining the effects of platelet-derived growth factor (PDGF)- or serum-induced growth on actin expression in postconfluent, quiescent cultures maintained in a defined serum-free media. Although both factors have been shown to stimulate proliferation and decrease fractional SM alpha-actin synthesis (Blank et al., 1988), their effects on actin mRNA levels were quite different. PDGF was found to induce a dramatic drop in SM alpha-actin steady state mRNA level but had no effect on nonmuscle beta-actin mRNA level. In contrast, serum stimulation was shown to increase nonmuscle beta-actin mRNA level, whereas SM alpha-actin mRNA level remained constant. Taken together these results indicate that PDGF is a specific and potent repressor of SM alpha-actin expression in vascular SMC and implicate a possible developmental role for PDGF in control of SMC differentiation. In addition, the observation that the level of SM alpha-actin mRNA is unaltered in serum-stimulated cells indicates that an absolute decrease in SM alpha-actin mRNA is not obligatory for cell cycle entrance.  相似文献   

13.
The molecular determinants of the contractile properties of smooth muscle are poorly understood, and have been suggested to be controlled by splice variant expression of the myosin heavy chain near the 25/50-kDa junction (Kelley, C. A., Takahashi, M., Yu, J. H., and Adelstein, R. S. (1993) J. Biol. Chem. 268, 12848-12854) as well as by differences in the expression of an acidic (MLC(17a)) and a basic (MLC(17b)) isoform of the 17-kDa essential myosin light chain (Nabeshima, Y., Nonomura, Y., and Fujii-Kuriyama, Y. (1987) J. Biol. Chem. 262, 106508-10612). To investigate the molecular mechanism that regulates the mechanical properties of smooth muscle, we determined the effect of forced expression of MLC(17a) and MLC(17b) on the rate of force activation during agonist-stimulated contractions of single cultured chicken embryonic aortic and gizzard smooth muscle cells. Forced expression of MLC(17a) in aortic smooth muscle cells increased (p < 0.05) the rate of force activation, forced expression of MLC(17b) in gizzard smooth muscle cells decreased (p < 0.05) the rate of force activation, while forced expression of the endogenous MLC(17) isoform had no effect on the rate of force activation. These results demonstrate that MLC(17) is a molecular determinant of the contractile properties of smooth muscle. MLC(17) could affect the contractile properties of smooth muscle by either changing the stiffness of the myosin lever arm or modulating the rate of a load-dependent step and/or transition in the actomyosin ATPase cycle.  相似文献   

14.
15.
Smooth muscle cells express isoforms of actin and myosin heavy chains (MHC). In early postnatal animals the nonmuscle (NM) actin and MHC isoforms in vascular (aorta) smooth muscle were present in relatively high percentages. More than 30% of the MHC and 40% of the actin isoforms were NM. The relative percentage of the NM isoforms decreased significantly as the animals reached maturity, with NM MHC less than 10% and NM actin less than 30% of the totals. Concurrent with this decrease in NM isoforms was an increase in the smooth muscle (SM) isoforms. The relative changes and time frame in which these changes occurred were very similar for the actin and MHC isoforms. In arterial tissue there were species differences for changes with development in the two SM MHC isoforms (SM1 and SM2). The ratio of SM1:SM2 in young rat aorta was approximately 0.5, while this same ratio was approximately 3 in young swine carotid. Both adult rats and swine had a SM1:SM2 MHC ratio of approximately 1.2. Rat bladder smooth muscle showed no significant change in NM vs SM ratio between young and old rats, while the SM1:SM2 ratio decreased from 2.7 to 1.7 between these age groups. The shifts in alpha and beta actin were similar to those in the vascular tissue, but of much smaller magnitude.  相似文献   

16.
The expression of fast myosin heavy chain (MHC) isoforms was examined in developing bicep brachii, lateral gastrocnemius, and posterior latissimus dorsi (PLD) muscles of inbred normal White Leghorn chickens (Line 03) and genetically related inbred dystrophic White Leghorn chickens (Line 433). Utilizing a highly characterized monoclonal antibody library we employed ELISA, Western blot, immunocytochemical, and MHC epitope mapping techniques to determine which MHCs were present in the fibers of these muscles at different stages of development. The developmental pattern of MHC expression in the normal bicep brachii was uniform with all fibers initially accumulating embryonic MHC similar to that of the pectoralis muscle. At hatching the neonatal isoform was expressed in all fibers; however, unlike in the pectoralis muscle the embryonic MHC isoform did not disappear. With increasing age the neonatal MHC was repressed leaving the embryonic MHC as the only detectable isoform present in the adult bicep brachii muscle. While initially expressing embryonic MHC in ovo, the post-hatch normal gastrocnemius expressed both embryonic and neonatal MHCs. However, unlike the bicep brachii muscle, this pattern of expression continued in the adult muscle. The adult normal gastrocnemius stained heterogeneously with anti-embryonic and anti-neonatal antibodies indicating that mature fibers could contain either isoform or both. Neither the bicep brachii muscle nor the lateral gastrocnemius muscle reacted with the adult specific antibody at any stage of development. In the developing posterior latissimus dorsi muscle (PLD), embryonic, neonatal, and adult isoforms sequentially appeared; however, expression of the embryonic isoform continued throughout development. In the adult PLD, both embryonic and adult MHCs were expressed, with most fibers expressing both isoforms. In dystrophic neonates and adults virtually all fibers of the bicep brachii, gastrocnemius, and PLD muscles were identical and contained embryonic and neonatal MHCs. These results corroborate previous observations that there are alternative programs of fast MHC expression to that found in the pectoralis muscle of the chicken (M.T. Crow and F.E. Stockdale, 1986, Dev. Biol. 118, 333-342), and that diversification into fibers containing specific MHCs fails to occur in the fast muscle fibers of the dystrophic chicken. These results are consistent with the hypothesis that avian muscular dystrophy is a developmental disorder that is associated with alterations in isoform switching during muscle maturation.  相似文献   

17.
Recently, it has been hypothesized that myosin light chain (MLC) phosphatase is activated by cGMP-dependent protein kinase (PKG) via a leucine zipper-leucine zipper (LZ-LZ) interaction through the C-terminal LZ in the myosin-binding subunit (MBS) of MLC phosphatase and the N-terminal LZ of PKG (Surks, H. K., Mochizuki, N., Kasai, Y., Georgescu, S. P., Tang, K. M., Ito, M., Lincoln, T. M., and Mendelsohn, M. E. (1999) Science 286, 1583-1587). Alternative splicing of a 3'-exon produces a LZ+ or LZ- MBS, and the sensitivity to cGMP-mediated smooth muscle relaxation correlates with the relative expression of LZ+/LZ- MBS isoforms (Khatri, J. J., Joyce, K. M., Brozovich, F. V., and Fisher, S. A. (2001) J. Biol. Chem. 276, 37250 -37257). In the present study, we determined the effect of LZ+/LZ- MBS isoforms on cGMP-induced MLC20 dephosphorylation. Four avian smooth muscle MBS-recombinant adenoviruses were prepared and transfected into cultured embryonic chicken gizzard smooth muscle cells. The expressed exogenous MBS isoforms were shown to replace the endogenous isoform in the MLC phosphatase holoenzyme. The interaction of type I PKG (PKGI) with the MBS did not depend on the presence of cGMP or the MBS LZ. However, direct activation of PKGI by 8-bromo-cGMP produced a dose-dependent decrease in MLC20 phosphorylation (p<0.05) only in smooth muscle cells expressing a LZ+ MBS. These results suggest that the activation of MLC phosphatase by PKGI requires a LZ+ MBS, but the binding of PKGI to the MBS is not mediated by a LZ-LZ interaction. Thus, the relative expression of LZ+/LZ- MBS isoforms could explain differences in tissue sensitivity to NO-mediated vasodilatation.  相似文献   

18.
The system coordinating expressions of nuclear coded mitochondrial proteins was investigated by examination of the 5'-flanking region of the human mitochondrial ATP synthase beta-subunit gene. The promoter activity was measured by a transient expression of a chloramphenicol acetyltransferase (CAT) gene connected with various 5'-deletion mutants of the 5'-flanking region. In this experiment, at least two regions enhanced this promoter activity and at least one region repressed it. In one of the enhancing regions, a consensus sequence was found for the genes of other mitochondrial proteins such as those for cytochrome c1 (Suzuki, H., Hosokawa, Y., Nishikimi, M., and Ozawa, T. (1989) J. Biol. Chem. 264, 1368-1374) and the pyruvate dehydrogenase alpha-subunit (Maragos, C., Hutchison, W. M., Hayasaka, K., Brown, G. K., and Dahl, H.-H. M. (1989) J. Biol. Chem. 264, 12294-12298; Ohta, S., Endo, H., Matsuda, K., and Kagawa, Y. (1989) Ann. N. Y. Acad. Sci. 573, 458-460). The characteristics of this enhancing element were examined by introducing a synthetic oligonucleotide element into the CAT plasmid with a deleted enhancing element. The resulting plasmid showed full recovery of promoter activity, and this activity was independent of the orientation or location of the insert. Therefore, this is an enhancer that may be common to the nuclear genes of some mitochondrial proteins involved in energy transduction.  相似文献   

19.
Recent findings (Ishii, K., Iwasaki, M., Inoue, S., Kenny, P. T. M., Komura, H., and Inoue, Y. (1989) J. Biol. Chem. 264, 1623-1630; Inoue, S., Iwasaki, M., Ishii, K., Kitajima, K., and Inoue, Y. (1989) J. Biol. Chem. 264, 18520-18526) of a relatively large quantity of complex-type free sialo-oligosaccharides in the unfertilized eggs of freshwater fish, Plecoglossus altivelis and Tribolodon hakonensis, prompted us to search for their progenitor glycoproteins. First we demonstrated a third occurrence of free sialoglycans in the unfertilized eggs of Medaka fish (Oryzias latipes). Next, in all three species studied, a uniformly high level of glycophosphoproteins (GPP) was identified and found to possess N-linked glycan units. The carbohydrate structures of the GPP were determined to be identical with those of the free glycans isolated from the unfertilized eggs of the respective fish species. Thus, the most likely candidate for the progenitor of free sialoglycans appeared to be the oocyte GPPs. This implies that the liberation of the free glycans by a putative peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase may represent a necessary biochemical event during vitellogenesis or oogenesis. The present results may provide insight into a new concept of a "protein N-glycosylation/de-N-glycosylation system" recently proposed by us (Seko, A., Kitajima, K., Inoue, Y., and Inoue, S. (1991) J. Biol. Chem. 266, 22110-22114).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号