首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An indigenously isolated white rot fungus, Schizophyllum commune IBL-06 was used to decolorize Solar brilliant red 80 direct dye in Kirk’s basal salts medium. In initial screening study, the maximum decolorization (84.8%) of Solar brilliant red 80 was achieved in 7 days shaking incubation period at pH 4.5 and 30 °C. Different physical and nutritional factors including pH, temperature and fungal inoculum density were statistically optimized through Completely Randomized Design (CRD), to enhance the efficiency of S. commune IBL-06 for maximum decolorization of Solar brilliant red 80 dye. The effects of inexpensive carbon and nitrogen sources were also investigated. Percent dye decolorization was determined by a reduction in optical density at the wavelength of maximum absorbance (λmax, 590 nm). Under optimum conditions, the S. commune IBL-06 completely decolorized (100%) the Solar brilliant red 80 dye using maltose and ammonium sulfate as inexpensive carbon and nitrogen sources, respectively in 3 days. S. commune IBL-06 produced the three major ligninolytic enzymes lignin peroxidase (LiP), manganase peroxidase (MnP) and lacaase (Lac) during the decolorization of Solar brilliant red 80. LiP was the major enzyme (944 U/mL) secreted by S. commune IBL-06 along with comparatively lower activities of MnP and Laccase.  相似文献   

2.
Ligninolytic enzyme production by the white-rot fungi Phanerochaete chrysosporium and Trametes versicolor precultivated with different insoluble lignocellulosic materials (grape seeds, barley bran and wood shavings) was investigated. Cultures of Phanerochaete chrysosporium precultivated with grape seeds and barley bran showed maximum lignin peroxidase (LiP) and manganese-dependent peroxidase (MnP) activities (1000 and 1232 U/l, respectively). Trametes versicolor precultivated with the same lignocellulosic residues showed the maximum laccase activity (around 250 U/l). For both fungi, the ligninolytic activities were about two-fold higher than those attained in the control cultures. In vitro decolorization of the polymeric dye Poly R-478 by the extracellular liquid obtained in the above-mentioned cultures was monitored in order to determine the respective capabilities of laccase, LiP and MnP. It is noteworthy that the degrading capability of LiP when P. chrysosporium was precultivated with barley bran gave a percentage of Poly R-478 decolorization of about 80% in 100 s, whereas control cultures showed a lower percentage, around 20%, after 2 min of the decolorization reaction.  相似文献   

3.

Background

Cost-effective production of industrially important enzymes is a key for their successful exploitation on industrial scale. Keeping in view the extensive industrial applications of lignin peroxidase (LiP), this study was performed to purify and characterize the LiP from an indigenous strain of Trametes versicolor IBL-04. Xerogel matrix enzyme immobilization technique was applied to improve the kinetic and thermo-stability characteristics of LiP to fulfil the requirements of the modern enzyme consumer sector of biotechnology.

Results

A novel LiP was isolated from an indigenous T. versicolor IBL-04 strain. T. versicolor IBL-04 was cultured in solid state fermentation (SSF) medium of corn cobs and maximum LiP activity of 592?±?6 U/mL was recorded after five days of incubation under optimum culture conditions. The crude LiP was 3.3-fold purified with specific activity of 553 U/mg after passing through the DEAE-cellulose and Sephadex-G-100 chromatography columns. The purified LiP exhibited a relatively low molecular weight (30?kDa) homogenous single band on native and SDS-PAGE. The LiP was immobilized by entrapping in xerogel matrix of trimethoxysilane (TMOS) and proplytetramethoxysilane (PTMS) and maximum immobilization efficiency of 88.6% was achieved. The free and immobilized LiPs were characterized and the results showed that the free and immobilized LiPs had optimum pH 6 and 5 while optimum temperatures were 60°C and 80°C, respectively. Immobilization was found to enhance the activity and thermo-stability potential of LiP significantly and immobilized LiP remained stable over broad pH and temperature range as compare to free enzyme. Kinetic constants K m and V max were 70 and 56???M and 588 and 417 U/mg for the free and immobilized LiPs, respectively. Activity of this novel extra thermo-stable LiP was stimulated to variable extents by Cu2+, Mn2+ and Fe2+ whereas, Cystein, EDTA and Ag+ showed inhibitory effects.

Conclusions

The indigenously isolated white rot fungal strain T. versicolor IBL-04 showed tremendous potential for LiP synthesis in SSF of corncobs in high titters (592 U/mL) than other reported Trametes (Coriolus, Polyporus) species. The results obtained after dual phase characterization suggested xerogel matrix entrapment a promising tool for enzyme immobilization, hyper-activation and stabilization against high temperature and inactivating agents. The pH and temperature optima, extra thermo-stability features and kinetic characteristics of this novel LiP of T. versicolor IBL-04 make it a versatile enzyme for various industrial and biotechnological applications.  相似文献   

4.
Raw mixed-dye wastewater from a textile dye-producing plant was partly decolorized by the agaric white-rot fungus, Clitocybula dusenii. The fungus had higher Mn peroxidase (MnP) and laccase activities when grown with dye effluent than in control cultures. The activity of MnP increased commensurately with the proportion of the raw dye wastewater in the medium (control: 20 U l–1; 10% v/v effluent: 67 U l–1; 25% v/v effluent: 130 U l–1; and 33% v/v effluent: 180 U l–1). Maximal decolorization rates were achieved over 20 d at 28 °C using four-fold diluted dye-containing effluent on a 5 d pre-grown mycelium.  相似文献   

5.
Among carbon sources studied, cellobiose and mannitol provided the highest laccase (Lac) activity (648 and 742 U1-1, respectively) of Trametes versicolor 775 while glucose gave maximum manganese peroxidase (MnP) and peroxidase activities (44 and 114U1-1, respectively). Citrus fruit peel as growth substrate enhanced Lac activity 7-fold when compared to the medium with cellobiose, whereas grape vine sawdust increased MnP and peroxidase activity up to 148 and 677U1-1, respectively.  相似文献   

6.
In this work, capability of Fusarium solani F-552 of producing lignocellulose-degrading enzymes in submerged fermentation was investigated. The enzyme cocktail includes hydrolases (cellulases, xylanases, and proteinases) as well as ligninolytic enzymes: manganese-dependent peroxidase (MnP), lignin peroxidase (LiP), and laccase (Lac). To our knowledge, this is the first report on production of MnP, LiP, and Lac together by one F. solani strain. The enzyme productions were significantly influenced by application of either lignocellulosic material or chemical inducers into the fermentation medium. Among them, corn bran significantly enhanced especially productions of cellulases and xylanases (248 and 170 U/mL, respectively) as compared to control culture (11.7 and 29.2 U/mL, respectively). High MnP activity (9.43 U/mL, control 0.45 U/mL) was observed when (+)-catechin was applied into the medium, the yield of LiP was maximal (33.06 U/mL, control 2.69 U/mL) in gallic acid, and Lac was efficiently induced by, 2,2′-azino-bis-[3-ethyltiazoline-6-sulfonate] (6.74 U/mL, not detected in control). Finally, in order to maximize the ligninolytic enzymes yields, a novel strategy of introduction of mild oxidative stress conditions caused by hydrogen peroxide into the fermentation broth was tested. Hydrogen peroxide significantly increased activities of MnP, LiP, and Lac which may indicate that these enzymes could be partially involved in stress response against H2O2. The concentration of H2O2 and the time of the stress application were optimized; hence, when 10 mmol/L H2O2 was applied at the second and sixth day of cultivation, the MnP, LiP, and Lac yields reached 21.67, 77.42, and 12.04 U/mL, respectively.  相似文献   

7.
Summary Colour removal from phenplic industrial effluents by phenol oxidase enzymes and white-rot fungi was compared. Soluble laccase and horseradish peroxidase (HRP) removed colour from pulp mill (E), cotton mill hydroxide (OH) and cotton mill sulphide (S) effluents, but rapid and irreversible enzyme inactivation took place. Entrapment of laccase in alginate beads improved decolorization by factors of 3.5 (OH) and 2 (E); entrapment of HRP improved decolorization by 36 (OH), 20 (E) and 9 (S). Beads were unsuitable for continuous use because the enzymes were rapidly released into solution. Co-polymerization of laccase or HRP with L-tyrosine gave insoluble polymers with enzyme activity. Entrapment of the co-polymers in gel beads further increased the efficiency of decolorization of E by 28 (laccase) and by 132 (HRP) compared with soluble enzymes. Maximum decolorization of all three effluents by batch cultures of Coriolus versicolor (70%–80% in 8 days) was greater than the maximum enzymic decolorization (48% of OH in 3 days by entrapped laccase). Soluble laccase (222 units ml–1) precipitated 1.2 g l–1 phenol from artificial coal conversion effluent at pH 6.0 and the rate of precipitation and enzyme inactivation was faster at pH 6.0 than at pH 8.5.Offprint requests to: R. G. Burns  相似文献   

8.
Manganese peroxidase, MnP, is one of the major ligninolytic enzymes produced by a number of white-rot fungi. The ability of this enzyme to degrade lignin by the fungus Bjerkanderasp BOS55 has opened its application to related bioprocesses such as recalcitrant-compound degradation and effluent decolorization. The medium reported to induce MnP production is composed of chemical grade reagents, all with relatively high costs for application to detoxification purposes. The use of inexpensive sources for MnP production can bring its implementation closer. For this purpose, dairy residues from cheese processing were considered. MnP production obtained using crude whey as the sole substrate reached appreciable levels, around 190 U L−1, values comparable to those found with synthetic media (between 175–250 U L−1). Thus, this cheese-processing byproduct can be used as an inexpensive alternative for the large-scale production of MnP. Received 14 December 1998/ Accepted in revised form 29 April 1999  相似文献   

9.
Textile dye effluents pose environmental hazards because of color and toxicity. Bioremediation of these has been widely attempted. However, their widely differing characteristics and high salt contents have required application of different microorganisms and high dilutions. We report here decolorization and detoxification of two raw textile effluents, with extreme variations in their pH and dye composition, used at 20–90% concentrations by each of the four marine-derived fungi. Textile effluent A (TEA) contained an azo dye and had a pH of 8.9 and textile effluent B (TEB) with a pH of 2.5 contained a mixture of eight reactive dyes. The fungi isolated from mangroves and identified by 18S and ITS sequencing corresponded to two ascomycetes and two basidiomycetes. Each of these fungi decolorized TEA by 30–60% and TEB by 33–80% used at 20–90% concentrations and salinity of 15 ppt within 6 days. This was accompanied by two to threefold reduction in toxicity as measured by LC50 values against Artemia larvae and 70–80% reduction in chemical oxygen demand and total phenolics. Mass spectrometric scan of effluents after fungal treatment revealed degradation of most of the components. The ascomycetes appeared to remove color primarily by adsorption, whereas laccase played a major role in decolorization by basidiomycetes. A process consisting of a combination of sorption by fungal biomass of an ascomycete and biodegradation by laccase from a basidiomycete was used in two separate steps or simultaneously for bioremediation of these two effluents.  相似文献   

10.
Synthetic textile dyes are among the most dangerous chemical pollutants released in industrial wastewater streams. Recognizing the importance of reducing the environmental impact of these dyes, the ability of the white rot fungus Phanerochaete chrysosporium to decolorize various textile dyes was investigated. This fungus decolorized 6 of the 14 structurally diverse dyes with varying efficiency (between 14% and 52%). There was no discernable pattern of decolorization even among dyes of the same chemical class, suggesting that attack on the dyes is relatively non-specific. Among the three dyes which showed >40% decolorization, Victoria Blue B (VB) was chosen for further analysis because the ability of the fungus to decolorize VB was nearly independent over a relatively broad concentration range. Blocking lignin peroxidase (LiP) and manganese peroxidase (MnP) production by the fungus did not substantially affect VB decolorization. Inhibition of laccase production by adding various inhibitors to shaken cultures reduced VB decolorization significantly suggesting a role for laccase in VB decolorization. When sodium azide and aminotriazole were used to inhibit endogenous catalase and cytochrome P-450 oxygenase activities, there was 100% and 70% reduction in VB decolorization, respectively. Adding benzoate to trap hydrogen peroxide-derived hydroxyl radicals resulted in 50% decolorization of VB. Boiling the extracellular fluid (ECF) for 30 min resulted in approximately 50% reduction in VB decolorization. Collectively, these data suggest that laccase, and/or oxygenase/oxidase and a heat-stable non-enzymatic factor, but not Lip and MnP, play a role in VB decolorization by P. chrysosporium.  相似文献   

11.
In the present study, the production of laccase (Lac) and manganese‐dependent peroxidase (MnP) by the white‐rot fungus Trametes versicolor grown in submerged cultures with different agricultural residues was investigated. The lignocellulosic materials studied were almond shells, hazelnut husks, sunflower stems, clover straw and hazelnut cobs, because they are common agricultural wastes in Turkey. Among the different lignocellulosic materials studied, hazelnut cobs provided the highest Lac and MnP activities (47.09 and 109.21 U/L, respectively). The optimum conditions were determined for Lac and MnP production in submerged cultures of T. versicolor by using hazelnut cobs as substrate. For Lac production, the optimum incubation time, hazelnut cob concentration, pH, and shaking rate were found as 4 days, 2% w/v, 6.0 and 130 rpm, respectively. For MnP production, the optimum incubation time, hazelnut cob concentration, pH and shaking rate were found as 5 days, 2% w/v, 6.0 and 90 rpm, respectively.  相似文献   

12.
The production of ligninolytic enzymes by the fungus Schizophyllum sp. F17 using a cost-effective medium comprised of agro-industrial residues in solid-state fermentation (SSF) was optimized. The maximum activities of the enzymes manganese peroxidase (MnP), laccase (Lac), and lignin peroxidases (LiP) were 1,200, 586, and 109 U/L, respectively, on day 5 of SSF. In vitro decolorization of three structurally different azo dyes by the extracellular enzymes was monitored to determine its decolorization capability. The results indicated that crude MnP, but not LiP and Lac, played a crucial role in the decolorization of azo dyes. After optimization of the dye decolorization system with crude MnP, the decolorization rates of Orange IV and Orange G, at an initial dye concentration of 50 mg/L, were enhanced to 76 and 57%, respectively, after 20 min of reaction at pH 4 and 35°C. However, only 8% decolorization of Congo red was observed. This enzymatic reaction system revealed a rapid decolorization of azo dyes with a low MnP activity of 24 U/L. Thus, this study could be the basis for the production and application of MnP on a larger scale using a low-cost substrate.  相似文献   

13.
Six agro-industrial wastes were evaluated as a support for ligninolytic enzyme production by the white-rot fungus Lentinus polychrous Lév. under solid-state fermentation. Enzyme production was markedly different according to the substrate used. Rice bran (RB) yielded the highest laccase activity of 1,449 U/L (after 21 days of culture) with specific activity of 4.4 U/g substrate. Rice bran supplemented with rice husk (RH) (2:1 by wt) showed high laccase activity of 1,425 U/L with specific activity of 10.0 U/g substrate (after 17 days of culture). The crude enzyme of the RH-RB culture also contained manganese peroxidase (MnP) and manganese-independent peroxidase (MIP) activities in relative proportions of 1.9:1.4:1 of laccase:MnP:MIP, respectively. Zymogram studies showed the same isoenzyme pattern with these ligninolytic enzymes. The high enzyme production level and low substrate cost of SSF-L. polychrous Lév. suggest that it has potential for industrial applications. Our studies showed that the crude enzyme from this culture exhibited in vitro decolorization of Indigo Carmine. The highest efficiency of dye decolorization was observed under alkaline conditions (pH 9.0) at an initial dye concentration of 10 mg/L. The rather high pH conditions and high efficiency in Indigo Carmine decolorization make the enzyme further interest for the applications in treatment of waste water from the textile industry, which contains synthetic dyes.  相似文献   

14.
Summary Three distinct pulp mill bleachery effluents, derived from a chlorine-alkali-hydpochlorite (CEH), an alkali-oxygen-peroxide (EOP), and a hypochlorite-chlorine dioxide-alkali-hypochlorite (HDEH) bleaching stage were treated with the white-rot fungiPhanerochaete chrysosporium andTrametes versicolor. Color units as well as absorbance in the UV (280 nm) of the CEH and HDEH effluents were diminished significantly by both fungi, whereas the EOP effluent lignins appeared recalcitrant. Toxicity was found to be highest in the chlorine-free EOP effluent.T. versicolor diminished the toxicity of both the CEH and the EOP effluent by about 35%, but caused no detoxification of the HDEH effluent.  相似文献   

15.
During dye decoloration by Trametes versicolor ATCC 20869 in modified Kirk’s medium, manganese peroxidase (MnP) and laccase were produced, but not lignin peroxidase, cellobiose dehydrogenase or manganese-independent peroxidase. Purified MnP decolorized azo dyes [amaranth, reactive black 5 (RB5) and Cibacron brilliant yellow] in Mn2+-dependent reactions but did not decolorize an anthraquinone dye [Remazol brilliant blue R (RBBR)]. However, the purified laccase decolorized RBBR five to ten times faster than the azo dyes and the addition of a redox mediator, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), did not alter decoloration rates. Amaranth and RB5 were decolorized the most rapidly by MnP since they have a hydroxyl group in an ortho position and a sulfonate group in the meta position relative to the azo bond. During a typical batch decoloration with the fungal culture, the ratio of laccase:MnP was 10:1 to 20:1 (based on enzyme activity) and increased to greater than 30:1 after decoloration was complete. Since MnP decolorized amaranth about 30 times more rapidly than laccase per unit of enzyme activity, MnP should have contributed more to decoloration than laccase in batch cultures.  相似文献   

16.
罗鑫  覃育贤  于存 《菌物学报》2018,37(9):1233-1242
锰过氧化物酶(manganese peroxidase,MnP)是白腐真菌降解多种异生物质的主要降解酶之一。本研究对白囊耙齿菌Irpex lacteus产MnP的酶活曲线进行监测,利用单因素和正交试验对I. lacteus产MnP的发酵条件进行优化,同时检测了I. lacteus的MnP粗酶液对5种染料的脱色效果。结果显示,I. lacteus在培养5d时MnP活性较大;I. lacteus产MnP较优的条件为:可溶性淀粉20g/L、尿素1g/L、pH 6.3、CaCl2 1mmol/L、FeCl3 1mmol/L,该条件下MnP活性达29.24U/L,与优化前MnP活性相比提高了1.25倍;I. lacteus的MnP粗酶液对5种染料均可脱色,其中对直接大红和活性红的脱色效果更为明显,脱色5d后的脱色率分别达到82%和81%。  相似文献   

17.
The production of manganese-dependent peroxidase (MnP) byPhanerochœte chrysosporium in a new solid-state bioreactor, the immersion bioreactor, operating with lignocellulosic waste, such as wood shavings, was investigated. Maximum MnP and lignin peroxidase (LiP) activity of 13.4 and 8.48 μkat/L were obtained, respectively. Thein vitro decolorization of several synthetic dyes by the extracellular liquid produced in the above-mentioned bioreactor (containing mainly MnP) was carried out and its degrading ability was assessed. The highest decolorization was reached with Indigo Carmine (98%) followed by Bromophenol Blue (56%) and Methyl Orange (36%), whereas Gentian Violet was hardly decolorized (6%).  相似文献   

18.
Interspecific fungal antagonism leads to biochemical changes in competing mycelia, including up-regulation of oxidative enzymes. Laccase, manganese peroxidase (MnP), manganese-repressed peroxidase (MRP) and lignin peroxidase (LiP) gene expression and enzyme activity were compared during agar interactions between Trametes versicolor and five other wood decay fungi resulting in a range of interaction outcomes from deadlock to replacement of one fungus by another. Increased laccase and Mn-oxidising activities were detected at all interaction zones, but there were few changes in activity in regions away from the interaction zone in T. versicolor mycelia compared to self-pairings. Whilst no LiP activity was detected in any pairing, low level LiP gene expression was detected. MnP activity was detected but not expression of MnP genes; instead, MRP could explain the observed activity. No relationship was found between extent of enzyme activity increase and interaction outcome. Similarities between patterns of gene expression and enzyme activity are discussed.  相似文献   

19.
The ligninolytic system of white rot fungi is primarily composed of lignin peroxidase, manganese peroxidase (MnP) and laccase. The present work was carried out to determine the best culture conditions for production of MnP and its activity in the relatively little-explored cultures of Dichomitus squalens, Irpex flavus and Polyporus sanguineus, as compared with conditions for Phanerochaete chrysosporium and Coriolus versicolor. Studies on enzyme production under different nutritional conditions revealed veratryl alcohol, guaiacol, Reax 80 and Polyfon H to be excellent MnP inducers. Electronic Publication  相似文献   

20.
Four different bacterial strains were isolated from pulp and paper mill sludge in which one alkalotolerant isolate (LP1) having higher capability to remove color and lignin, was identified as Bacillus sp. by 16S RNA sequencing. Optimization of process parameters for decolorization was initially performed to select growth factors which were further substantiated by Taguchi approach in which seven factors, % carbon, % black liquor, duration, pH, temperature, stirring and inoculum size, at two levels, applying L-8 orthogonal array were taken. Maximum color was removed at pH 8, temperature 35°C, stirring 200 rpm, sucrose (2.5%), 48 h, 5% (w/v) inoculum size and 10% black liquor. After optimization 2-fold increase in color and lignin removal from 25–69% and 28–53%, respectively, indicated significance of Taguchi approach in decolorization and delignification of lignin in pulp and paper mill effluent. Enzymes involved in the process of decolorization of effluent were found to be xylanase (54 U/ml) and manganese peroxidase (28 U/ml). Treated effluent was also evaluated for toxicity by Comet assay using Saccharomyces cerevisiae MTCC 36 as model organism, which indicated 58% reduction after treatment by bacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号