首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthetic peptides corresponding to the active domain of the heat-stable inhibitor protein of cAMP-dependent protein kinase (Cheng, H.-C., Kemp, B. E., Pearson, R. B., Smith, A. J., Misconi, L., Van Patten, S. M., and Walsh, D. A. (1986) J. Biol. Chem. 261, 989-992) were tested as inhibitors of cGMP-dependent protein kinase. The peptides themselves were not substrates. cGMP-dependent protein kinase activity was assayed using histone H2B and two synthetic peptide substrates. Consistent with previous observations of other peptide inhibitors of this enzyme (Glass, D. B. (1983) Biochem. J. 213, 159-164), the inhibitory peptides had no effect on the phosphorylation of histone H2B, but they competitively inhibited cGMP-dependent phosphorylation of the two peptide substrates. The parent inhibitor peptide, PKI(5-24)amide, and a series of analogs had Ki (or IC50) values for cGMP-dependent protein kinase in the range of 15-190 microM. In contrast to their effects on the cAMP-dependent protein kinase, the inhibitory peptides were substantially less potent with cGMP-dependent protein kinase, and potency was reduced by the presence of the NH2-terminal residues (residues 5-13). We conclude that the two protein kinases share a recognition of the basic amino acid cluster within the pseudosubstrate region of the peptide, but that the cGMP-dependent protein kinase does not recognize additional NH2-terminal determinants that make the inhibitor protein extremely potent toward the cAMP-dependent enzyme. Even- when tested at high concentrations and with peptide substrates, the native inhibitor protein did not inhibit cGMP-dependent protein kinase under assay conditions in which the peptides derived from it were inhibitory. Thus, the native inhibitor protein appears to have structural features which block interaction with the cGMP-dependent enzyme and enhance its selectivity for cAMP-dependent protein kinase.  相似文献   

2.
Friend murine erythroleukemia cells (MEL cells) contain a cAMP-independent protein kinase which phosphorylates the 100,000-Da catalytic subunit of the (Na,K)-ATPase both in living cells and in the purified plasma membrane (Yeh, L.-A., Ling, L., English, L., and Cantley, L. (1983) J. Biol. Chem. 258, 6567-6574). We have taken advantage of the selective phosphorylation of the 100,000-Da subunit in purified plasma membranes and the similarity between the proteolysis patterns of the MEL cell and dog kidney (Na,K)-ATPase to map the site of kinase phosphorylation on the MEL cell enzyme. The chymotryptic and tryptic cleavage sites of the dog kidney (Na,K)-ATPase have previously been located (Castro, J., and Farley, R. A. (1979) J. Biol. Chem. 254, 2221-2228). The 100,000-Da catalytic subunits of the dog kidney and MEL cell enzymes were specifically labeled at the active site aspartate residue by incubation with (32P)orthophosphate in the presence of Mg2+ and ouabain. Digestion of these two enzymes with chymotrypsin or trypsin revealed similar active site aspartate containing proteolytic fragments indicating a similar structure for the two enzymes. Chymotryptic digestions of MEL cell (Na,K)-ATPase labeled in vitro with [gamma-32P]ATP localize the region of kinase phosphorylation to within a 35,000-Da peptide derived from the middle of the 100,000-Da subunit. Tryptic digestion of the MEL cell plasma membranes degraded the 100,000-Da subunit to an NH2-terminal 43,000-Da peptide which contained the active site aspartate but which did not contain the kinase-labeled region. These results further locate the region of kinase phosphorylation to the COOH-terminal half of the 35,000-Da chymotryptic peptide. This location places the site of phosphorylation between the active site aspartate residue which accepts the phosphate of ATP during turnover and an ATP-binding site which has previously been located by labeling with fluorescein 5'-isothiocyanate (Carilli, C. T., Farley, R. A., Perlman, D. M., and Cantley, L. C. (1982) J. Biol. Chem. 257, 5601-5606). Phosphorylation of the (Na,K)-ATPase in this region may serve to regulate the activity of this enzyme.  相似文献   

3.
Glycogen synthase, the rate-limiting enzyme in glycogen biosynthesis, has been postulated to exist as isozymes in rabbit liver and muscle (Camici, M., Ahmad, Z., DePaoli-Roach, A. A., and Roach, P. J. (1984) J. Biol. Chem. 259, 2466-2473). Both isozymes share a number of properties including multiple phosphorylation of the enzyme subunit. In the present study, we determined the amino acid sequences surrounding phosphorylation sites in the rabbit liver isozyme recognized by cyclic AMP-dependent protein kinase. Two dominant phosphopeptides (P-1 and P-2) were generated from tryptic digestion. Amino acid sequences of the purified peptides were determined by automated Edman degradation using a gas-phase sequenator. The locations of phosphorylated residues were identified by measuring 32Pi release during Edman degradation cycles. The NH2-terminal sequence of peptide P-1 is S-L-S(P)-V-T-S-L-G-G-L-P-Q-W-E-V-E-E-L-P-V-D-D-L-L-L-P-E-V. This sequence exhibits a strong homology to the site 2 region in the NH2 terminus of the muscle isozyme. The NH2-terminal sequence of peptide P-2 is M-Y-P-R-P-S(P)-S(P)-V-P-P-S-P-L-G-S-Q-A. This sequence shows strong homology to the site 3 region in the COOH terminus of the muscle isozyme. However, some interesting sequence differences were revealed in this region. For example, substitution of serine for alanine at position 6 of peptide P-2 created a new phosphorylation site for cyclic AMP-dependent protein kinase. Phosphorylation of the proline/serine-rich site 3 region correlated with inactivation of the liver isozyme and suggests an important role for this segment of the molecule in the regulation of glycogen synthase. No phosphorylation sites corresponding to sites 1a and 1b of the muscle isozyme were detected. In addition, the results provide definitive chemical proof that glycogen synthase from rabbit liver and muscle are isozymes encoded by distinct messages.  相似文献   

4.
Phosphate groups as substrate determinants for casein kinase I action   总被引:22,自引:0,他引:22  
Phosphorylation of rabbit muscle glycogen synthase by cyclic AMP-dependent protein kinase has been shown to enhance subsequent phosphorylation by casein kinase I (Flotow, H., and Roach, P. J. (1989) J. Biol. Chem. 264, 9126-9128). In the present study, synthetic peptides based on the sequences of the four phosphorylated regions in muscle glycogen synthase were used to probe the role of substrate phosphorylation in casein kinase I action. With all four peptides, prior phosphorylation significantly stimulated phosphorylation by casein kinase I. A series of peptides was synthesized based on the NH2-terminal glycogen synthase sequence PLSRTLS7VSS10LPGL, in which phosphorylation at Ser7 is required for modification of Ser10 by casein kinase I. The spacing between the P-Ser and the acceptor Ser was varied to have 1, 2, or 3 intervening residues. The peptide with a 2-residue spacing (-S(P)-X-X-S-) was by far the best casein kinase I substrate. When the P-Ser residue at Ser7 was replaced with P-Thr, the resulting peptide was still a casein kinase I substrate. However, substitution of Asp or Glu residues at Ser7 led to peptides that were not phosphorylated by casein kinase I. Phosphorylation of one of the other peptides showed that Thr could also be the phosphate acceptor. From these results, we propose that there are substrates for casein kinase I for which prior phosphorylation is a critical determinant of protein kinase action. In these instances, an important recognition motif for casein kinase I appears to be -S(P)/T(P)-Xn-S/T- with n = 2 much more effective than n = 1 or n = 3. Thus, casein kinase I may be involved in hierarchal substrate phosphorylation schemes in which its activity is controlled by the phosphorylation state of its substrates.  相似文献   

5.
Synthetic high- and low-molecular-mass atrial peptides were phosphorylated in vitro by cyclic AMP-dependent protein kinase and [32P]ATP. From a series of atrial peptide analogs, it was deduced that the amino acid sequence, Arg101-Ser104 of atriopeptin was required for optimal phosphorylation. Phosphorylated AP(99-126) was less potent than the parent atriopeptin in vasorelaxant activity and receptor-binding properties. These results indicate that the presence of a phosphate group at the N-terminus of AP(99-126) decreases the interaction of the peptide with its receptor and, as a consequence, decreases bioactivity. These observations are in contrast to those of Rittenhouse et al. [(1986) J. Biol. Chem. 261, 7607-7610] who reported that phosphorylation of AP(101-126) enhanced the stimulation of Na/K/Cl cotransport in cultured vascular smooth muscle cells.  相似文献   

6.
A variety of eukaryotic viral and cellular proteins possesses an NH2-terminal N-myristoylglycine residue important for their biological functions. Recent studies of the primary structural requirements for peptide substrates of the enzyme responsible for this modification in yeast demonstrated that residues 1, 2, and 5 play a critical role in enzyme: ligand interactions (Towler, D. A., Adams, S. P., Eubanks, S. R., Towery, D. S., Jackson-Machelski, E., Glaser, L., and Gordon J. I. (1987b) Proc. Natl. Acad. Sci. U. S. A. 84, 2708-2812). This was determined by examining as substrates a series of synthetic peptides whose sequences were systematically altered from a "parental" peptide derived from the known N-myristoylprotein bovine heart cyclic AMP-dependent protein kinase (A kinase) catalytic subunit. We have now extended these studies in order to examine structure/activity relationships in the COOH-terminal regions of octapeptide substrates of yeast N-myristoyltransferase (NMT). The interaction between yeast NMT and the side chain of residue 5 in peptide ligands is apparently sterically constrained, since Thr5 is unable to promote the very high affinity binding observed with a Ser5 substitution. A substrate hexapeptide core has been defined which contains much of the information necessary for recognition by this lower eukaryotic NMT. Addition of COOH-terminal basic residues to this hexapeptide enhances peptide binding, while COOH-terminal acidic residues destabilize NMT: ligand interactions. Based on the results obtained from our in vitro studies of over 80 synthetic peptides and yeast NMT, we have identified a number of potential N-myristoylproteins from searches of available protein databases. These include hepatitis B virus pre-S1, human SYN-kinase, rodent Gi alpha, and bovine transducin-alpha. Peptides corresponding to the NH2-terminal sequences of these proteins and several known N-myristoylproteins were assayed using yeast NMT as well as partially purified rat liver NMT. While a number of the synthetic peptides exhibited similar catalytic properties with the yeast and mammalian enzymes, surprisingly, the SYN-kinase, Gi alpha, and transducin-alpha peptides were N-myristoylated by rat NMT but not by yeast NMT. This suggests that either multiple NMT activities exist in rat liver or the yeast and rodent enzymes have similar but distinct peptide substrate specificities.  相似文献   

7.
The specificities of cAMP-dependent and cGMP-dependent protein kinases were studied using synthetic peptides corresponding to the phosphorylation site in 6-phosphofructo-2-kinase/Fru-2,6-P2ase (Murray, K.J., El-Maghrabi, M.R., Kountz, P.D., Lukas, T.J., Soderling, T.R., and Pilkis, S.J. (1984) J. Biol. Chem. 259, 7673-7681) as substrates. The peptide Val-Leu-Gln-Arg-Arg-Arg-Gly-Ser-Ser-Ile-Pro-Gln was phosphorylated by the catalytic subunit of cAMP-dependent protein kinase on predominantly the first of its 2 seryl residues. The Km (4 microM) and Vmax (14 mumol/min/mg) values were comparable to those for the phosphorylation of this site within native 6-phosphofructo-2-kinase/Fru-2,6-P2ase. An analog peptide containing only two arginines was phosphorylated with poorer kinetic constants than was the parent peptide. These results suggest that the amino acid sequence at its site of phosphorylation is a major determinant that makes 6-phosphofructo-2-kinase/Fru-2,6-P2ase an excellent substrate for cAMP-dependent protein kinase. Although 6-phosphofructo-2-kinase/Fru-2,6-P2ase was not phosphorylated by cGMP-dependent protein kinase, the synthetic peptide corresponding to the cAMP-dependent phosphorylation site was a relatively good substrate (Km = 33 microM, Vmax = 1 mumol/min/mg). Thus, structures other than the primary sequence at the phosphorylation site must be responsible for the inability of cGMP-dependent protein kinase to phosphorylate native 6-phosphofructo-2-kinase/Fru-2,6-P2ase. Peptides containing either a -Ser-Ser- or -Thr-Ser- moiety were all phosphorylated by cGMP-dependent kinase to 1.0 mol of phosphate/mol of peptide, but the phosphate was distributed between the two hydroxyamino acids. Substitution of a proline in place of the glycine between the three arginines and these phosphorylatable amino acids caused the protein kinase selectively to phosphorylate the threonyl or first seryl residue and also enhanced the Vmax values by 4-6-fold. These results are consistent with a role for proline in allowing an adjacent threonyl residue to be readily phosphorylated by cGMP-dependent protein kinase.  相似文献   

8.
We have determined the sequence of the sites phosphorylated by protein kinase C in the turkey gizzard smooth muscle myosin light chain. In contrast to previous work (Nishikawa, M., Hidaka, H., and Adelstein, R. S. (1983) J. Biol. Chem. 258, 14069-14072), two-dimensional tryptic peptide maps of both heavy meromyosin and the isolated myosin light chain showed two major phosphopeptides, one containing phosphoserine and the other phosphothreonine. We have purified the succinylated tryptic phosphopeptides using reverse phase and DEAE high pressure liquid chromatography. The serine-containing peptide, residues 1-4 (Ac-SSKR), is the NH2-terminal peptide. The phosphorylated serine residue may be either serine 1 or serine 2. The threonine-containing peptide, residues 5-16, yielded the sequence AKAKTTKKRPQR. Analysis of the yields and radioactivity of the products from automated Edman degradation showed that threonine 9 is the phosphorylation site.  相似文献   

9.
The ADP-ribosylation site of histone H1 from calf thymus by purified hen liver nuclear ADP-ribosyltransferase was determined and effects of the ADP-ribose X histone-H1 adduct on cAMP-dependent phosphorylation of the histone H1 were investigated. ADP-ribosylated histone H1 was prepared by incubation of histone H1, 1 mM [adenylate-32P]NAD and the purified ADP-ribosyltransferase. N-Bromosuccinimide-directed bisection of ADP-ribosylated histone H1 showed that the NH2-terminal fragment (Mr = 6000) was modified and contained serine residue 38, the site of phosphorylation by cAMP-dependent protein kinase. Digestion of the NH2-terminal fragment with cathepsin D and trypsin, and purification of this fragment, using high-performance liquid chromatography, yielded a radiolabelled single peptide corresponding to residues 29-34 of histone H1, containing the arginine residue as the ADP-ribosylation site. These results indicate that ADP-ribosylation of histone H1 occurs at the arginine residue 34, sequenced at the NH2-terminal side of the phosphate-accepting serine residue 38. Phosphorylation of histone H1 from calf thymus by cAMP-dependent protein kinase was markedly reduced when histone H1 was ADP-ribosylated. Kinetic studies of phosphorylation revealed that ADP-ribosylated histone H1 was a linear competitive inhibitor of histone H1 and a linear non-competitive inhibitor of ATP.  相似文献   

10.
N alpha-Acetyltransferase, which catalyzes the transfer of an acetyl group from acetyl coenzyme A to the alpha-NH2 group of proteins and peptides, was isolated from Saccharomyces cerevisiae and demonstrated by protein sequence analysis to be NH2-terminally blocked. The enzyme was purified 4,600-fold to apparent homogeneity by successive purification steps using DEAE-Sepharose, hydroxylapatite, DE52 cellulose, and Affi-Gel blue. The Mr of the native enzyme was estimated to be 180,000 +/- 10,000 by gel filtration chromatography, and the Mr of each subunit was estimated to be 95,000 +/- 2,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme has a pH optimum near 9.0, and its pI is 4.3 as determined by chromatofocusing on Mono-P. The enzyme catalyzed the transfer of an acetyl group to various synthetic peptides, including human adrenocorticotropic hormone (ACTH) (1-24) and its [Phe2] analogue, yeast alcohol dehydrogenase I (1-24), yeast alcohol dehydrogenase II (1-24), and human superoxide dismutase (1-24). These peptides contain either Ser or Ala as NH2-terminal residues which together with Met are the most commonly acetylated NH2-terminal residues (Persson, B., Flinta, C., von Heijne, G., and Jornvall, H. (1985) Eur. J. Biochem. 152, 523-527). Yeast enolase, containing a free NH2-terminal Ala residue, is known not to be N alpha-acetylated in vivo (Chin, C. C. Q., Brewer, J. M., and Wold, F. (1981) J. Biol. Chem. 256, 1377-1384), and enolase (1-24), a synthetic peptide mimicking the protein's NH2 terminus, was not acetylated in vitro by yeast acetyltransferase. The enzyme did not catalyze the N alpha-acetylation of other synthetic peptides including ACTH(11-24), ACTH(7-38), ACTH(18-39), human beta-endorphin, yeast superoxide dismutase (1-24). Each of these peptides has an NH2-terminal residue which is rarely acetylated in proteins (Lys, Phe, Arg, Tyr, Val, respectively). Among a series of divalent cations, Cu2+ and Zn2+ were demonstrated to be the most potent inhibitors. The enzyme was inactivated by chemical modification with diethyl pyrocarbonate and N-bromosuccinimide.  相似文献   

11.
A protein kinase (ATP: protein phosphotransferase, EC 2.7.1.37) which preferentially phosphorylates protamine is purified about 250-fold from the soluble fraction of baker's yeast (Saccharomyces cerevisiae). This enzyme is not sensitive to activation by cyclic nucleotides. Histone is about 5% as active as protamine in the reaction rate. Neither casein, phosvitin nor glycogen phosphorylase is active as substrate. The enzyme is distinguishable from casein kinase of the classical type (Rabinowitz, M. and Lipmann, F. (1960) J. Biol. Chem. 235, 1043-1050) and from adenoshine 3', 5'-monophosphate-dependent protein kinase described earlier (Takai, Y., Yamamura, H. and Nishizuka, Y. (1974) J. Biol. Chem. 249,530-535).  相似文献   

12.
A protein kinase, able to phosphorylate casein, phosvitin, and glycogen synthase, was purified approximately 9000-fold from rabbit liver, and appeared analogous to an enzyme studied by Itarte and Huang (Itarte, E., and Huang, K.-P. (1979) J. Biol. Chem. 254, 4052-4057). This enzyme, designated here casein kinase-1, was shown to be a distinct glycogen synthase kinase and in particular to be different from the protein kinase GSK-3 (Hemmings, B.A., Yellowlees, D., Kernohan, J.C., and Cohen, P. (1981) Eur. J. Biochem. 119, 443-451). Casein kinase-1 had native molecular weight of 30,000 as judged by gel filtration. The enzyme phosphorylated beta-casein A or B better than kappa-casein or alpha s1-casein, and modified only serine residues in beta-casein B and phosvitin. The apparent Km for ATP was 11 microM, and GTP was ineffective as a phosphoryl donor. The phosphorylation of glycogen synthase by casein kinase-1 was inhibited by glycogen, half-maximally at 2 mg/ml, and by heparin, half-maximally at 0.5-1.0 microgram/ml, but was unaffected by Ca2+ and/or calmodulin, or by cyclic AMP. Phosphorylation of muscle glycogen synthase proceeded to a stoichiometry of at least 6 phosphates/subunit with reduction in the +/- glucose-6-P activity ratio to less than 0.4. Phosphate was introduced into both a COOH-terminal CNBr fragment (CB-2) as well as a NH2-terminal fragment (CB-1). At a phosphorylation stoichiometry of 6 phosphates/subunit, 84% of the phosphate was associated with CB-2 and 6.5% with CB-1. The remainder of the phosphate was introduced into another CNBr fragment of apparent molecular weight 16,500. Phosphorylation by casein kinase-1 correlated with reduced electrophoretic mobilities, as analyzed on polyacrylamide gels in the presence of sodium dodecyl sulfate, of the intact glycogen synthase subunit, as well as the CNBr fragments CB-1 and CB-2.  相似文献   

13.
Sarcolemmal vesicles were prepared from bovine cardiac muscle by differential and discontinuous sucrose density gradient centrifugation. Na+/K+-ATPase was purified 33-fold to a specific activity of 53 +/- 0.5 (12) mumol Pi X mg-1 X h-1, binding sites for strophantin 20-fold to a density of 56.3 +/- 5.3 (14) pmol/mg and that for the calcium antagonist nitrendipine 5.5-fold to a density of 0.72 +/- 0.07 (6) pmol/mg. The specific activity of the Na+/Ca2+ exchanger was 61.1 +/- 3.7 (6) nmol/mg. The vesicles had an intravesicular volume of 20 +/- 4 (4) microliter/mg and 56.9 +/- 6 (4)% of the vesicles were right-side-out oriented. Several peptides of the purified membranes were phosphorylated in the presence of Mg . ATP and EGTA. Most of the radioactive phosphate was incorporated into a peptide with an apparent molecular mass of 22 kDa. Denaturation of the membranes at 100 degrees C changed the mobility of this peptide to 15 kDa and 11 kDa. This peptide could not be distinguished from a sarcoplasmic reticulum peptide of similar molecular mass. The phosphorylation of the sarcolemmal peptide was stimulated by Ca2+/calmodulin, cAMP and the catalytic subunit of cAMP-dependent protein kinase. A comparison of the phosphorylation of sarcolemmal membranes with that of sarcoplasmic reticulum showed that Ca2+/calmodulin stimulated in each membrane, the phosphorylation of the 22-kDa peptide and a 44-kDa peptide, and in the sarcoplasmic reticulum the phosphorylation of an additional peptide of 55-kDa. Ca2+/calmodulin-dependent phosphorylation of a 55-kDa peptide could not be demonstrated in sarcolemma, regardless if sarcolemmal membranes were incubated together with sarcoplasmic reticulum or if the phosphorylation was carried out in the presence of purified cardiac myosin light chain kinase or phosphorylase kinase. 'Depolarization' induced Ca2+ uptake which was measured according to Bartschat, D.K., Cyr, D.L. and Lindenmayer, G.E. [(1980) J. Biol. Chem. 255, 10044-10047] was 5 nmol/mg protein. This uptake was not enhanced after preincubation of the vesicles with Mg . ATP or Mg . ATP and cAMP-dependent protein kinase. The value of 5 nmol/mg protein is in agreement with the theoretical amount of Ca2+ which can be accumulated by the bovine cardiac sarcolemma in the absence of a driving force other than the Ca2+ gradient. The potassium-stimulated Ca2+ uptake was not blocked by the organic Ca2+ channel blockers. Prolonged incubation of Mg . ATP with sarcolemmal vesicles in the presence of various ATPase inhibitors led to the hydrolysis of ATP. The liberated phosphate precipitated with Ca2+ in the presence of LaCl3. These precipitates amounted to an apparent Ca2+ uptake ranging from 50 to over 1000 nmol/mg. The results suggest that potassium-stimulated Ca2+ uptake of bovine cardiac sarcolemmal vesicles is not enhanced in the presence of ATP or by phosphorylation of a 22-kDa peptide.  相似文献   

14.
Acyl-peptide hydrolase catalyzes the removal of an N alpha-acetylated amino acid residue from an N alpha-acetylated peptide. Two overlapping degenerate oligonucleotide probes based on the sequence of a CNBr tryptic peptide, derived from purified rat acyl-peptide hydrolase, were synthesized and used to screen a rat liver lambda gt11 cDNA library. A 2.5-kilobase cDNA was cloned and sequenced. This clone contained 2364 base pairs of rat acyl-peptide hydrolase sequence but lacked a translational initiation codon. Using a 220-base pair probe derived from near the 5'-end of this almost full-length cDNA to rescreen the library, full-length clones were isolated, which contained an in-frame ATG codon at nucleotides 6-8 and encoded the NH2-terminal sequence, Met-Glu-Arg-Gln.... The DNA sequence encoded a protein of 732 amino acid residues, 40% of which were confirmed by protein sequence data from 19 CNBr or CNBr tryptic peptides. The isolated enzyme is NH2-terminally blocked (Kobayashi, K., and Smith, J. A. (1987) J. Biol. Chem. 262, 11435-11445), and based on the NH2-terminal protein sequence deduced from the DNA sequence and the sequence of the most NH2-terminal CNBr peptide, it is likely that the NH2-terminal residue is an acetylated methionine residue, since such residues are frequently juxtaposed to glutamyl residues (Persson, B., Flinta, C., von Heijne, G., and Jornvall, H. (1985) Eur. J. Biochem. 152, 523-527). The RNA blot analysis revealed a single message of 2.7 kilobases in various rat tissues examined. Although this enzyme is known to be inhibited by diisopropyl fluorophosphate and acetylalanine chloromethyl ketone (Kobayashi, K., and Smith, J. A. (1987) J. Biol. Chem. 262, 11435-11445), no strong similarity in protein sequence has been found with other serine proteases. This result suggests that acyl-peptide hydrolase may be a unique serine protease.  相似文献   

15.
Fructose-1,6-bisphosphatase from the yeast Saccharomyces cerevisiae has properties similar to other gluconeogenic fructose-1,6-bisphosphatases, but an unusual characteristic of the yeast enzyme is that it can be phosphorylated in vitro by cAMP-dependent protein kinase. Phosphorylation also occurs in vivo, presumably as part of a signalling mechanism for the enzyme's degradation. To probe the structural basis for the phosphorylation of yeast fructose-1,6-bisphosphatase, we have developed an improved procedure for the purification of the enzyme and then performed sequence studies with the in vitro-phosphorylated protein as well as with tryptic and chymotryptic peptides containing the phosphorylation site. As a result of these studies, we have determined that yeast fructose-1,6-bisphosphatase has the following 24-residue NH2-terminal amino acid sequence: Pro-Thr-Leu-Val-Asn-Gly-Pro-Arg-Arg-Asp-Ser-Thr-Glu-Gly- Phe-Asp-Thr-Asp-Ile-Ile-Thr-Leu-Pro-Arg. The site of phosphorylation is located at Ser-11 in the above sequence. The amino acid sequence around the site of phosphorylation contains the sequence - Arg-Arg-X-Ser- associated with many of the better substrates of cAMP-dependent protein kinase. The sequence of residues 15-24 above is highly homologous with the sequence of residues 6-15 of pig kidney fructose-1,6-bisphosphatase, showing 7 out of 10 residues in identical positions. The yeast enzyme, however, has a dissimilar NH2-terminal region which extends beyond the NH2 terminus of mammalian fructose-1,6-bisphosphatases and contains a unique phosphorylation site.  相似文献   

16.
Substrate specificity of a multifunctional calmodulin-dependent protein kinase   总被引:31,自引:0,他引:31  
The substrate specificity of the multifunctional calmodulin-dependent protein kinase from skeletal muscle has been studied using a series of synthetic peptide analogs. The enzyme phosphorylated a synthetic peptide corresponding to the NH2-terminal 10 residues of glycogen synthase, Pro-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ser-Ser-NH2, stoichiometrically at Ser-7, the same residue phosphorylated in the parent protein. The synthetic peptide was phosphorylated with a Vmax of 12.5 mumol X min-1 X mg-1 and an apparent Km of 7.5 microM compared to values of 1.2 mumol X min-1 X mg-1 and 3.1 microM, respectively, for glycogen synthase. Similarly, a synthetic peptide corresponding to the NH2-terminal 23 residues of smooth muscle myosin light chain was readily phosphorylated on Ser-19 with a Km of 4 microM and a Vmax of 5.4 mumol X min-1 X mg-1. The importance of the arginine 3 residues NH2-terminal to the phosphorylated serine in each of these peptides was evident from experiments in which this arginine was substituted by either leucine or alanine, as well as from experiments in which its position in the myosin light chain sequence was varied. Positioning arginine 16 at residues 14 or 17 abolished phosphorylation, while location at residue 15 not only decreased Vmax 14-fold but switched the major site of phosphorylation from Ser-19 to Thr-18. It is concluded that the sequence Arg-X-Y-Ser(Thr) represents the minimum specificity determinant for the multifunctional calmodulin-dependent protein kinases. Studies with various synthetic peptide substrates and their analogs revealed that the specificity determinants of the multifunctional calmodulin-dependent protein kinase were distinct from several other "arginine-requiring" protein kinases.  相似文献   

17.
18.
In vivo labeled fructose-1,6-bisphosphatase was immunopurified from yeast (Saccharomyces cerevisiae) cells that had been incubated in the presence of [32P] orthophosphate. Tryptic peptides from labeled enzyme were mapped by high performance liquid chromatography. Most of the radioactivity was found to be associated with the peptide Arg9 through Arg24, the same peptide which had been previously shown to be phosphorylated in vitro by cAMP-dependent protein kinase (Rittenhouse, J., Harrsch, P. B., Kim, J. N., and Marcus, F. (1986) J. Biol. Chem. 261, 3939-3943). The amino acid sequence analysis suggests that phosphorylation occurs at the same site, Ser11. We have also determined the extent of phosphorylation at Ser11 of fructose-1,6-bisphosphatase in yeast cultures growing under various nutritional conditions by measuring the relative amounts of phospho- and corresponding dephosphopeptides in tryptic digests. Significant levels of phosphorylation of the enzyme were found in yeast cultures grown under gluconeogenic conditions that varied from 0.15 to 0.50 mol of phosphate per mol of enzyme subunit. However, phosphate incorporation rapidly increased to greater than 0.8 mol after addition of glucose to these cultures. An alternative technique, based solely on enzyme activity measurements, was also developed to estimate the extent of fructose-1,6-bisphosphatase phosphorylation in yeast cultures. The results obtained with this technique agreed with those obtained by high performance liquid chromatography of tryptic peptides.  相似文献   

19.
A 50-amino acid peptide predicted by chemical modification studies of yeast hexokinase to contain an ATP-binding site has been synthesized and purified. The peptide, which includes residues from glutamate 78 at the NH2-terminal end to leucine 127 at the COOH-terminal, resides within the smaller of the two lobes found in the three-dimensional structure of yeast hexokinase. It is this region which has been reported recently to exhibit significant sequence homology with hexokinase types I and IV of higher eukaryotic cells and sequence homology with the active site of protein kinases. Similar to native yeast hexokinase, the 50-amino acid peptide interacts strongly with the fluorescent analog TNP-ATP [2',(3')-O-(2,4,6-trinitrophenyl)-adenosine-5'-triphosphate]. A 5-fold enhancement is observed when 8 microM peptide interacts with 20 microM TNP-ATP. The stoichiometry of binding is very close to 1 mol of TNP-ATP/mol peptide. Also, similar to native yeast hexokinase, the fluorescent enhancement observed upon TNP-ATP binding to the synthetic peptide is greater than that observed upon TNP-ADP binding. Finally, TNP-AMP exhibits a much lower fluorescent enhancement in the presence of hexokinase or the synthetic peptide. The additional findings that ATP can readily prevent TNP-ATP binding and that TNP-ATP can substitute for ATP as a weak substrate for hexokinase in the phosphorylation of glucose indicate that the synthetic peptide described here comprises part of the catalytic site.  相似文献   

20.
Yeast aminopeptidase I is a vacuolar enzyme, which catalyzes the removal of amino acids from the NH2 terminus of peptides and proteins (Frey, J., and Rohm, K-H. (1978) Biochim. Biophys. Acta 527, 31-41). A yeast genomic DNA encoding aminopeptidase I was cloned from a yeast EMBL3A library and sequenced. The DNA sequence encodes a precursor protein containing 514 amino acid residues. The "mature" protein, whose NH2-terminal sequence was confirmed by automated Edman degradation, consists, based only on the DNA sequence, of 469 amino acids. A 45-residue presequence contains positively and negatively charged as well as hydrophobic residues, and its NH2-terminal residues could be arrayed in an amphiphilic alpha-helix. This presequence differs from the signal sequences which direct proteins across bacterial plasma membranes and endoplasmic reticulum or into mitochondria. It remains to be established how this unique presequence targets aminopeptidase I to yeast vacuoles and how this sorting utilizes classical protein secretory pathways. Further, the aminopeptidase I gene, localized previously by genetic mapping to yeast chromosome XI and called the LAP4 gene (Trumbly, R. J., and Bradley, G. (1983) J. Bacteriol. 156, 36-48), was determined by DNA blot analyses to be a single copy gene located on chromosome XI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号