首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RICHARD T. HOLMES 《Ibis》2007,149(Z2):2-13
Effective conservation and management of migratory bird species requires an understanding of when and how their populations are limited and regulated. Since 1969, my colleagues and I have been studying migratory songbird populations in their breeding quarters at the Hubbard Brook Experimental Forest in north‐central New Hampshire, USA, and since 1986, in their winter quarters in the Greater Antilles (Jamaica). Long‐term data on the abundance and demography of these populations, coupled with experimental tests of mechanisms, indicate that processes operating in the breeding area (e.g. density‐dependent fecundity, food limitation) are sufficient to limit and regulate the local abundance of these species. At the same time, limiting factors operating in the non‐breeding season (e.g. climate‐induced food limitation in winter quarters and especially mortality during migration) also have important impacts on migrant populations. Furthermore, recent studies have shown that limiting processes during the winter period can carry over into the breeding season and affect reproductive output. These findings clearly demonstrate that to understand changes in abundance of long‐distance migrant species requires knowledge of events operating throughout the annual cycle, which presents a challenge to researchers, managers and others concerned with the welfare of these species.  相似文献   

2.
Where there is seasonal disparity among opportunities, the season with those in shortest supply is most likely to limit populations. Among migrant birds that travel between different breeding and winter ranges, any of breeding, migratory or winter conditions could exclusively constitute such population‐limiting factors. In both the New and Old Worlds, landmass is disproportionately concentrated in temperate latitudes. In the Americas, most passerine bird species that breed in the USA and Canada spend the winter further south, commonly in parts of the tropics where landmass is significantly less. Using a sample of 89 migratory species (eight passerine families) that breed in eastern North America, I considered patterns of geographic breeding range size, winter range size and winter distribution. Winter range size is usually smaller than breeding range size (84 of 89 species), often substantially so (minimum 8%, mean 52%). Wintering latitude explains significant variation in both breeding range size and winter range size, as well as in winter range size relative to breeding range size. In particular, all three measures vary latitudinally in patterns similar to latitudinal variation in landmass. These patterns collectively suggest that the reduction in landmass in the latitudes of Central America and the Caribbean is a limiting factor for migrant bird populations, adding to other research concluding that winter conditions sometimes prevail over breeding conditions in the limitation of populations. Hectare for hectare, habitat destruction in the tropics is likely to have the greater impact on the welfare of passerine populations breeding in North America.  相似文献   

3.
Where there is seasonal disparity among opportunities, the season with those in shortest supply is most likely to limit populations. Among migrant birds that travel between different breeding and winter ranges, any of breeding, migratory or winter conditions could exclusively constitute such population-limiting factors. In both the New and Old Worlds, landmass is disproportionately concentrated in temperate latitudes. In the Americas, most passerine bird species that breed in the USA and Canada spend the winter further south, commonly in parts of the tropics where landmass is significantly less. Using a sample of 89 migratory species (eight passerine families) that breed in eastern North America, I considered patterns of geographic breeding range size, winter range size and winter distribution. Winter range size is usually smaller than breeding range size (84 of 89 species), often substantially so (minimum 8%, mean 52%). Wintering latitude explains significant variation in both breeding range size and winter range size, as well as in winter range size relative to breeding range size. In particular, all three measures vary latitudinally in patterns similar to latitudinal variation in landmass. These patterns collectively suggest that the reduction in landmass in the latitudes of Central America and the Caribbean is a limiting factor for migrant bird populations, adding to other research concluding that winter conditions sometimes prevail over breeding conditions in the limitation of populations. Hectare for hectare, habitat destruction in the tropics is likely to have the greater impact on the welfare of passerine populations breeding in North America.  相似文献   

4.
Alexander M. Mills  Colin J. Weir 《Oikos》2007,116(12):2062-2070
We build a model with large-scale demographic consequences for migratory species. The model operates where four elements co-occur, and we rely on empirical research using migratory birds to demonstrate them. First, breeding ranges have internal structure flowing from natal philopatry. Second, fecundity varies geographically. Third, populations of different breeding provenances commingle during winter. And fourth, a population-limiting carrying capacity operates during winter. In the absence of breeding season population-limitation, only the breeding population with maximum fecundity persists. Consequently, some potential breeding areas that offer suitable and productive habitat are bereft of breeding birds because of the interplay between the geographical fecundity gradient and the shared winter quarters. Where breeding season population-limitation also plays a role for at least one population, one (or more) breeding population becomes permanently depressed, resulting in a density well below the carrying capacity of the productive breeding habitat that is occupied. In either case, not all populations fare equally well, despite net positive breeding season productivity. Changes in winter carrying capacity, for example habitat degradation in winter quarters, can lead to uneven effects on geographically defined breeding populations, even though there has been no change in the circumstances of the breeding range.  相似文献   

5.
Events happening in one season can affect life‐history traits at (the) subsequent season(s) by carry‐over effects. Wintering conditions are known to affect breeding success, but few studies have investigated carry‐over effects on survival. The Eurasian oystercatcher Haematopus ostralegus is a coastal wader with sedentary populations at temperate sites and migratory populations in northern breeding grounds of Europe. We pooled continental European ringing‐recovery datasets from 1975 to 2000 to estimate winter and summer survival rates of migrant and resident populations and to investigate long‐term effects of winter habitat changes. During mild climatic periods, adults of both migratory and resident populations exhibited survival rates 2% lower in summer than in winter. Severe winters reduced survival rates (down to 25% reduction) and were often followed by a decline in survival during the following summer, via short‐term carry‐over effects. Habitat changes in the Dutch wintering grounds caused a reduction in food stocks, leading to reduced survival rates, particularly in young birds. Therefore, wintering habitat changes resulted in long‐term (>10 years) 8.7 and 9.4% decrease in adult annual survival of migrant and resident populations respectively. Studying the impact of carry‐over effects is crucial for understanding the life history of migratory birds and the development of conservation measures.  相似文献   

6.
Many studies have demonstrated that forest fragmentation reduces populations of animal species and causes local extinction, triggering many cascading effects. The effect of fragmentation on animals can be exerted through various processes, but such effects have been understudied. In this study, we posed the possibility of differences in the seasonal effects of fragmentation on frugivorous birds and their dispersal of seeds belonging to five tree species. We hypothesized that these effects may be caused by birds and their habitat selection for suitable breeding forests. We compared the abundance and species richness of frugivorous birds and the number of bird-removed fruits between a well-preserved and a fragmented temperate forest for two consecutive years. The abundance of birds was lower in the fragmented compared to the well-preserved forest during the breeding season, although no clear differences in species richness were observed. In contrast, similar decreases in bird abundance were not observed during the migratory season. After controlling for variation in crop size, the number of bird-removed fruits was lower in the fragmented forest compared to the well-preserved forest during the breeding season, but there was no such tendency during the migratory season. These results indicate that evaluations regarding the effects of fragmentation on seed dispersal that do not consider seasonal factors may lead to erroneous conclusions. This study suggests that the effects of fragmentation can be exerted though various processes, many of which remain poorly studied and warrant further examination.  相似文献   

7.
Carry-over effects take place when events occurring in one season influence individual performance in a subsequent season. Blood parasites (e.g. Plasmodium and Haemoproteus) have strong negative effects on the body condition of their hosts and could slow the rate of feather growth on the wintering grounds. In turn, these winter moult costs could reduce reproductive success in the following breeding season. In house martins Delichon urbica captured and studied at a breeding site in Europe, we used ptilochronology to measure growth rate of tail feathers moulted on the winter range in Africa, and assessed infection status of blood parasites transmitted on the wintering grounds. We found a negative association between haemosporidian parasite infection status and inferred growth rate of tail feathers. A low feather growth rate and blood parasite infections were related to a delay in laying date in their European breeding quarters. In addition, clutch size and the number of fledglings were negatively related to a delayed laying date and blood parasite infection. These results stress the importance of blood parasites and feather growth rate as potentially mechanisms driving carry-over effects to explain fitness differences in wild populations of migratory birds.  相似文献   

8.
Although long‐distance migratory songbirds are widely believed to be at risk from warming temperature trends, species capable of attempting more than one brood in a breeding season could benefit from extended breeding seasons in warmer springs. To evaluate local and global factors affecting population dynamics of the black‐throated blue warbler (Setophaga caerulescens), a double‐brooded long‐distance migrant, we used Pradel models to analyze 25 years of mark–recapture data collected in New Hampshire, USA. We assessed the effects of spring temperature (local weather) and the El Niño Southern Oscillation index (a global climate cycle), as well as predator abundance, insect biomass, and local conspecific density on population growth in the subsequent year. Local and global climatic conditions affected warbler populations in different ways. We found that warbler population growth was lower following El Niño years (which have been linked to poor survival in the wintering grounds and low fledging weights in the breeding grounds) than La Niña years. At a local scale, populations increased following years with warm springs and abundant late‐season food, but were unaffected by spring temperature following years when food was scarce. These results indicate that the warming temperature trends might have a positive effect on recruitment and population growth of black‐throated blue warblers if food abundance is sustained in breeding areas. In contrast, potential intensification of future El Niño events could negatively impact vital rates and populations of this species.  相似文献   

9.

Aim

Recent, rapid population declines in many Afro‐Palaearctic migratory bird species have focussed attention on changing conditions within Africa. However, processes influencing population change can operate throughout the annual cycle and throughout migratory ranges. Here, we explore the evidence for impacts of breeding and non‐breeding conditions on population trends of British breeding birds of varying migratory status and wintering ecology.

Location

Great Britain (England & Scotland).

Methods

Within‐ and between‐species variation in population trends is quantified for 46 bird species with differing migration strategies.

Results

Between 1994 and 2007, rates of population change in Scotland and England differed significantly for 19 resident and 15 long‐distance migrant species, but were similar for 12 short‐distance migrant species. Of the six long‐distance migrant species that winter in the arid zone of Africa, five are increasing in abundance throughout Britain. In contrast, the seven species wintering in the humid zone of Africa are all declining in England, but five of these are increasing in Scotland. Consequently, populations of both arid and humid zone species are increasing significantly faster in Scotland than England, and only the English breeding populations of species wintering in the humid zone are declining.

Main conclusions

Population declines in long‐distance migrants, especially those wintering in the humid zone, but not residents or short‐distance migrants suggest an influence of non‐breeding season conditions on population trends. However, the consistently less favourable population trends in England than Scotland of long‐distance migrant and resident species strongly suggest that variation in the quality of breeding grounds is influencing recent population changes. The declines in humid zone species in England, but not Scotland, may result from poorer breeding conditions in England exacerbating the impacts of non‐breeding conditions or the costs associated with a longer migration, while better conditions in Scotland may be buffering these impacts.
  相似文献   

10.
Explanations for the ecological integration of migratory and non-migratory (resident) insectivorous birds in the tropics have been complicated by the paradox that arthropod abundances are low when bird abundances reach their annual peak. The breeding currency hypothesis and the nest predation hypothesis both account for this paradox by postulating that residents are held below the non-breeding season carrying capacity, which frees resources available for migratory insectivores. The breeding currency hypothesis suggests residents are limited by food suitable for nestlings, whereas the nest predation hypothesis emphasizes the primacy of high rates of nest predation. However, theoretical arguments suggest that food availability and predation risk interact strongly to limit breeding birds. We use graphical analyses to extend the breeding currency hypothesis to incorporate effects of nest predation. This yields a more synthetic and realistic model for the integration of migrant and resident insectivores in the tropics – the balanced breeding limitation hypothesis.  相似文献   

11.
We studied experimentally how heterospecific attraction may affect habitat selection of migrant passerine birds in Finnish Lapland. We manipulated the densities of resident tit species (Parus spp.). In four study plots residents were removed before the arrival of the migrants in the first study year, and in four other plots their densities were increased by releasing caught individuals. In the second year the treatments of the areas were reversed, allowing paired comparisons within each plot. We also investigated the relative abundance of arthropods in the study plots by the sweep-net method. This allowed us to estimate the effect of food resources on the abundance of birds. The heterospecific attraction hypothesis predicts that densities of migrant species (especially habitat generalists) would be higher during increased resident density. Results supported this prediction. Densities and number of the most abundant migrant species were significantly higher when resident density was increased than when they were removed. On the species level the redwing (Turdus iliacus) showed the strongest positive response to the increased abundance of tits. Migrant bird abundances seemed not to vary in parallel with relative arthropod abundance, with the exception of the pied flycatcher (Ficedula hypoleuca) which showed a strongly positive correlation with many arthropod groups. The results of the experiment indicate that migrants can use resident tit species as a cue to a profitable breeding patch. The relationship between the abundance of the birds and arthropods suggests that annual changes in food resources during the breeding season probably do not have a very important effect on bird populations in these areas. The results stress the importance of positive interspecific interactions in structuring northern breeding bird communities. Received: 1 September 1997 / Accepted: 22 January 1998  相似文献   

12.
When species occupy habitats that vary in quality, choice of habitat can be critical in determining individual fitness. In most migratory species, juveniles migrate independently of their parents and must therefore choose both breeding and winter habitats. Using a unique dataset of marked black-tailed godwits (Limosa limosa islandica) tracked throughout their migratory range, combined with analyses of stable carbon isotope ratios, we show that those individuals that occupy higher quality breeding sites also use higher quality winter sites. This seasonal matching can severely inflate inequalities in individual fitness. This population has expanded over the last century into poorer quality breeding and winter habitats and, across the whole population; individual birds tend to occupy either novel or traditional sites in both seasons. Winter and breeding season habitat selection are thus strongly linked throughout this population; these links have profound implications for a wide range of population and evolutionary processes. As adult godwits are highly philopatric, the initial choice of winter habitat by juveniles will be critical in determining future survival, timing of migration and breeding success.  相似文献   

13.
David Holyoak 《Bird Study》2013,60(4):215-227
Analysis of Nest Record Cards reveals altitudinal and habitat differencesbetween these two species. The resident or partially migratory Stonechat has a longer breeding season (with a potential for rearing three broods) than the Whinchat which is a trans-Saharan migrant and arrives later. It is suggested that the greater productivity of the Stonechat might counterbalance a higher winter mortality.  相似文献   

14.
The Resplendent Quetzal (Pharomachrus mocinno) is an altitudinal migrant that nests in high elevation cloud forests and migrates toward lower areas during the summer rainy season. It has been suggested that its migratory movements are related to the abundance of ripe Lauraceae fruits. We studied the quetzal diet during two consecutive years, as well as changes in fruit abundance of the plant species on which the bird feeds at El Triunfo Biosphere Reserve, southeastern Mexico. The quetzal was observed feeding on 32 plant species; of these, 24 are new records in its diet. We chose 20 of these 32 species and studied their fruit phenology for two years in order to describe the relationship between fruit and quetzal abundance. Our results showed that quetzal abundance in the breeding area was correlated with the total number of fruiting species, whereas the correlation between quetzal abundance and the number of fruiting Lauraceae species was only marginal. Additionally, a correlation test showed that quetzal abundance was marginally correlated with total fruit availability (total no. of fruits per month); however, the correlation between quetzal abundance and the number of fruits in the Lauraceae was not significant. Our results suggest that the dynamics of food resources may be playing a major role in the quetzal's migratory behavior. Knowing the bird's diet may aid in characterizing the type of habitat adequate for its conservation. Our observations in this respect suggest that conservation efforts to preserve this bird species should concentrate on the protection of its habitat, including both breeding and nonbreeding (migration) locations.  相似文献   

15.
Aim We studied how local and regional abundance of a migratory passerine (the blackcap Sylvia atricapilla) track resource availability in breeding and wintering grounds, in an attempt to understand the processes underlying the distribution and regulation of migratory bird populations in summer and in winter. Location Our study was conducted in Spain. In summer, we sampled five localities representing the diversity of environmental conditions met by breeding Spanish blackcaps. In winter, we sampled eight localities in the wintering range of the species including different habitat types (forests and shrublands). Methods Our approach was based on the matching rule, a model that predicts that any local variation in resource abundance between two adjacent habitat patches should be tracked by animals through a similar variation in population abundance. Eventually, this local process should conform to abundance distributions at regional scales. We sampled two habitat patches in each locality, each one including three to five line transects, 500‐m long and 50‐m wide, where we counted blackcaps and measured vegetation structure and fruit abundance. Results During the breeding season, the abundance of blackcaps was strongly correlated with the ground cover of brambles (Rubus spp.), a bush which grows in moist sectors in Mediterranean forests and is the commonest nesting substrate of Spanish blackcaps. Both local and regional changes in bramble cover were tracked by variations in blackcap abundance. However, the rate of increase in blackcap abundance with increasing bramble cover along the Spanish gradient was lower than the one predicted under resource matching. In winter, abundance of fruiting shrubs was the best predictor of blackcap abundance, although local abundance of blackcaps not always fitted local abundance of fruits. Notwithstanding this effect, the regional pattern of abundance tracked changes in fruit availability according to the matching rule. Main conclusions Our results support the strong effect of habitat quality on the abundance distribution of blackcaps and the tracking of different key resources along the year. Together with the different degrees of resource tracking by blackcaps at local and regional scales, these results also support the view that both breeding and wintering processes have to be studied, and studies have to be conducted at the appropriate spatial scales, if we are to understand the processes underlying the abundance distribution of migratory birds.  相似文献   

16.
1. Patterns of distribution of breeding austral migrant tyrant-flycatchers in temperate South America were quantified and analysed in conjunction with a variety of ecological, biogeographical and climatic variables.
2. The pattern of proportion of migratory to total breeding tyrannids was most strongly associated with latitude and two temperature variables, mean temperature of the coldest month and relative annual range of temperature.
3. The strong associations of latitude and temperature with percentage of migrants are consistent with the results of most similar investigations of the breeding distributions of migratory birds, both for migrants breeding in North America and in Europe, but contradict the hypothesis that habitat complexity plays a major role in structuring the proportion of migrants in communities of breeding birds.
4. The consistency of results among studies of migrants on different continents suggests that temperature and latitude, presumably a surrogate for one or more climatic variables, are globally significant factors in the breeding distributions of migratory birds.
5. The results for austral migrant flycatchers are consistent with the hypothesis that the prevalence of migration at any particular locality is ultimately dependent on the abundance of resources in the breeding season and the severity of the winter season, or on the difference in resource levels between summer and winter.  相似文献   

17.
Determining the links between breeding populations and the pressures, threats and conditions they experience presents a challenge for the conservation of migratory birds which can use multiple sites separated by hundreds to thousands of kilometres. Furthermore, migratory connectivity – the connections made by migrating individuals between networks of breeding and non-breeding sites – has important implications for population dynamics. The Whinchat Saxicola rubetra is declining across its range, and tracking data from a single African non-breeding site implies high migratory spread. We used geolocators to describe the migration routes and non-breeding areas of 20 Whinchats from three British breeding populations. As expected, migratory spread was high, with birds from the three populations overlapping across a wide area of West Africa. On average, in non-breeding areas, British breeding Whinchats were located 652 km apart from one another, with some likely to share non-breeding areas with individuals from breeding populations as far east as Russia. Four males made a direct non-breeding season movement to a second, more westerly, non-breeding location in January. Autumn migration was through Iberia and around the western edge of the Sahara Desert, whereas spring migration was more direct, indicating an anticlockwise loop migration. Weak migratory connectivity implies that Whinchat populations are somewhat buffered against local changes in non-breeding conditions. If non-breeding season processes have played a role in the species’ decline, then large-scale drivers are likely to be the cause, although processes operating on migration, or interactions between breeding and non-breeding processes, cannot be ruled out.  相似文献   

18.
We examined how conditions prior to migration influenced migration performance of two breeding populations of black‐and‐white warblers Mniotilta varia by linking information on the migrant's winter habitat quality, measured via stable carbon isotopes, with information on their breeding destination, measured via stable hydrogen isotopes. The quality of winter habitat strongly influenced the timing of migration when we accounted for differential timing of migration between breeding populations. Among birds migrating to the same breeding destination, males and females arriving early to the stopover site originated from more mesic habitat than later arriving birds, suggesting that the benefits of occupying high‐quality mesic habitat during the winter positively influence the timing of migration. However, male warblers arriving early to the stopover site were not in better migratory condition than later arriving conspecifics that originated from poor‐quality xeric winter habitat, regardless of breeding destination. The two breeding populations stopover at the study site during different time periods, suggesting that the lower migratory condition of early birds is not a function of the time of season, but potentially a migrant's migration strategy. Strong selection pressures to arrive early on the breeding grounds to secure high‐quality breeding territories may drive males from high‐quality winter habitat to minimize time at the expense of energy. This migration strategy would result in a smaller margin of safety to buffer the effects of adverse weather or scarcity of food, increasing the risk of mortality. The migratory condition of females was the same regardless of the timing of migration or breeding destination, suggesting that females adopt a strategy that conserves energy during migration. This study fills an important gap in our understanding of the linkages between winter habitat quality and factors that influence the performance of migration, the phase of the annual cycle thought to be limiting most migratory bird populations.  相似文献   

19.
Aim Intuitively, species in which the individuals migrate long distances between summer and winter quarters should be more likely to disperse and colonize new breeding areas than resident species. However, it has repeatedly been noted that many bird species with large ranges are residents. This paradox was tested on land birds breeding in the boreal forest of the Palaearctic, the largest uninterrupted stretch of habitat on earth. Methods The longitudinal distribution of two land bird communities on each side of the Eurasian continent, in Scandinavia and eastern Siberia, were used to test whether migratory birds indeed have a lower colonization success than resident birds. Results The migratory species are significantly less likely than resident species to have a range including both regions. The pattern held true even after controlling for latitudinal effects and local abundance, and was also observed at the level of genus and family. Main conclusions The relatively low colonization success of migratory species into new breeding areas may be because these new areas require novel migratory programs (migratory distance, direction and timing) in order for the birds to reach suitable wintering grounds.  相似文献   

20.
Long-distance migration allows many bird species to overcome the severe climatic changes that occur in seasonal environments. Migration is highly demanding, and given its cyclical nature, we currently know that it has substantial effects on the population parameters of migratory birds during both breeding and wintering seasons. However, the potential effects of the presence of migratory birds in their wintering grounds on populations of resident birds have remain largely unexplored. Here, we propose the hypothesis that migratory birds negatively affect the habitat occupancy and population abundance of resident birds because of the arrival of numerous individuals during the most limiting months of the year. Here, we studied different species of migratory and resident birds that coexist during winter in an urban ecological reserve located within Mexico City. We used single-species multiseason occupancy models, two-species occupancy models, and distance sampling techniques to evaluate changes in occupancy and population density of resident bird species during three consecutive winters. We found an aggregation pattern between two resident species (Psaltriparus minimus and Thryomanes bewickii) with three migratory warblers (Cardellina pusilla, Setophaga coronata and Setophaga townsendi). Thus, our results provide evidence of the formation of mixed-species flocks in our study area. We also conclude that resident birds experience different demographic and behavioral processes during winter that not necessarily result from interspecific interactions with migratory birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号