首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have examined the possible role of two signal transducing mechanisms, tyrosine phosphorylation and activation of protein kinase C (PKC), during fibroblast growth factor (FGF)-induced mesoderm induction in Xenopus. Tyrosine phosphorylation was examined through the use of a monoclonal anti-phosphotyrosine antibody. This antibody was shown to recognize the FGF receptor crosslinked to radioiodinated FGF. We also studied the response of Xenopus ectodermal explants to sodium orthovanadate, a compound that has been shown to elevate intracellular phosphotyrosine levels. Thirty percent of explants cultured in 100 microM vanadate were induced. In addition, vanadate synergized with FGF to give inductions that were more dorsal in nature than either vanadate or FGF alone. The role of PKC was evaluated by measuring PKC activity during mesoderm induction by FGF and by examining the effect of the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) on explants. TPA did not induce mesoderm, however, activation of PKC was detected in FGF-treated explants. Therefore, activation of the PKC pathway alone is not sufficient for mesoderm induction. Simultaneous treatment with TPA and FGF resulted in a significant inhibition of mesoderm induction by FGF, suggesting that activation of PKC could be part of a negative feedback mechanism. In contrast, TPA had no effect on induction by activin A.  相似文献   

2.
 The retinoblastoma (RB) gene is a tumor suppressor gene that plays an important role in cell cycle arrest and in the terminal differentiation of skeletal myoblasts. Differentiation into muscle occurs in Xenopus embryo explants during mesoderm induction by fibroblast growth factor (FGF) or activin A. We examined expression of the RB gene product (pRB) during mesoderm induction in vivo and in vitro. We show that hypo- and hyper-phosphorylated forms of pRB are present during early development and that expression of both forms increases significantly during the blastula stage, concomitant with mesoderm induction. Further investigation revealed that pRB is enriched in the presumptive mesoderm of the blastula stage embryo. In animal cap explants induced by Xenopus bFGF (XbFGF), pRB expression levels increased approximately tenfold while no increase was observed in explants induced by activin. However, when explants were induced by XbFGF in the presence of sodium orthovanadate, a compound previously shown to synergize with FGF to produce more dorsal ”activin-like” inductions than FGF alone, only a slight increase in pRB expression was observed. Furthermore, upregulation of pRB during mesoderm induction in vitro displayed an inverse correlation with expression of XFKH1, a marker for notochord. These results suggest that pRB may be important for patterning along the dorsoventral axis. Received: 22 February 1996 / Accepted: 20 September 1996  相似文献   

3.
We have cultured explants of Xenopus blastular animal cap tissue from embryos that had received an earlier treatment with LiCl and from their untreated siblings, in various concentrations of XTC-cell-derived mesoderm-inducing factor (XTC-MIF, Smith, 1987; Smith et al. 1988). The pretreatment with lithium that we used transforms later morphogenesis in the whole embryo to give radialized body forms with anterior/dorsal levels of structure grossly over-represented. In addition, animal caps from 'Li+' embryos were allowed to develop without exposure to in vitro MIF (Li+ controls) and compared with normal uninduced control explants, and explants were made from normal early blastulae but given various initial treatments with LiCl in culture. The results confirm that the lithium ion itself will not induce mesoderm in competent, animal cap tissue of Xenopus. It does, however, enhance the responsiveness of this tissue to XTC-MIF, in a way that parallels its recently reported effect in the case of another mesoderm inducer of different character, bFGF (Slack et al. 1988). The effects observed are sufficient to imply that the altered body pattern that follows lithium treatment, in whole embryos, could be caused by modulation of the responses to an unaltered pattern of in situ inductive stimuli. We also observe evidence that appreciable inductive signals reach animal pole tissue beyond the limits of mesoderm formation in normal development. Relatively low concentrations of MIF prevent the development of an epidermis-specific marker in dissociated blastular animal cap cells (Symes et al. 1988). When such experiments are repeated in relation to the lithium pretreatment of embryos, such treatment is seen to have sensitized the cell population, so that the MIF concentration range that assures complete suppression of the marker is reduced. The results are discussed in relation to induction considered as pattern formation.  相似文献   

4.
To elucidate the mechanism of determination and regulation of hemopoiesis in the early Xenopus embryo, explants of dorsal and ventral mesoderm from various stage embryos were cultured alone or combined with various tissues derived from the same stage embryo. Western blot analysis of larvae-specific globin expression using monoclonal antibody L5.41 revealed that extensive erythropoiesis occurred in the explants of ventral mesoderm from st. 22 tailbud embryo, but not in those of dorsal mesoderm. Experiments using combined explants at this stage demonstrated that the in vitro differentiation of erythrocytes in the ventral mesoderm could be completely inhibited by the dorsal tissue, including neural tube, notochord, and somite mesoderm, but not by other mesoderms, gut endoderm, or forebrain. Subsequent explant studies showed that the notochord alone is sufficient for this inhibition. Furthermore, the ventral mesoderm explant from the st. 10+ early gastrula embryo was not able to differentiate into erythroid cells. However, small amounts of globin were expressed if ventral mesoderm of this stage was combined with animal pole cells which were mainly differentiated to epidermis. This stimulation was enhanced when both tissues were excised together without separation, while none of the other parts of st. 10+ embryo had this stimulatory effect. These observations found in the combined explants suggest that in vivo interactions between the ventral mesoderm and adjacent tissues are important for normal development of erythroid precursor cells.  相似文献   

5.
We have reported that the animal pole cells stimulate the ventral mesoderm of early gastrula Xenopus embryo (stage 10) to differentiate into erythrocytes. To determine the molecular mechanism(s) involved in the stimulatory effect of the animal pole, ventral mesoderm explants were cultured in the presence of various defined cellular factors. In this study, we report that murine stem cell factor (SCF) stimulates globin expression at the optimum dose of 10 ng/ml. Globin expression was observed from the ventral mesoderm explants treated with SCF, but not from the dorsal mesoderm and the animal pole explants. Morphological studies of the ventral mesoderm treated with SCF showed that only a certain population of the ventral mesoderm differentiates into erythrocytes. On the other hand, coculture of ventral mesoderm and animal pole revealed the differentiation of the entire structures into mesenchyme, blood cells, and the overlying epidermis. These data suggest that SCF may play a role in the stimulation of erythrocytic differentiation, but the effect of the animal pole cells cannot be replaced with that of SCF.  相似文献   

6.
In Pleurodeles , cell-matrix interactions play a major role in promoting active mesodermal cell migration during gastrulation. It was therefore important to determine whether the expression of define matrix molecules may be dependent on mesoderm induction. Results from induction experiments done with XTC cell line-conditioned medium show that mesoderm tissues induced in animal cap explants of Pleurodeles are identical to those from Xenopus . However, we also show that dorsally-induced explants in Pleurodeles elongate to a lesser degree than in Xenopus . This observation agrees well with the differences observed in the role of ECM in Pleurodeles and Xenopus gastrulation, respectively. Additional immunostaining studies demonstrate that the induction of mesodermal tissues is associated with the expression of chondroitin sulfate whereas fibronectin fibrils are already assembled in uninduced animal caps. These results suggest that mesoderm cell-matrix interactions in early amphibian embryo may be under the control of mesoderm induction.  相似文献   

7.
We compared the type and patterning of morphogenic cell behaviors driving convergent extension of the Xenopus neural plate in the presence and absence of persistent vertical signals from the mesoderm by videorecording explants of deep neural tissue with involuted mesoderm attached and of deep neural tissue alone. In deep neural-over-mesoderm explants, neural plate cells express monopolar medially directed motility and notoplate cells express randomly oriented motility, two new morphogenic cell behaviors. In contrast, in deep neural explants (without notoplate), all cells express bipolar mediolateral cell motility. Deep neural-over-mesoderm and deep neural explants also differ in degree of neighbor exchange during mediolateral cell intercalation. In deep neural-over-mesoderm explants, cells intercalate conservatively, whereas in deep neural explants cells intercalate more promiscuously. Last, in both deep neural-over-mesoderm and deep neural explants, morphogenic cell behaviors differentiate in an anterior-to-posterior and lateral-to-medial progression. However, in deep neural-over-mesoderm explants, morphogenic behaviors first differentiate in intervals along the anteroposterior axis, whereas in deep neural explants, morphogenic behaviors differentiate continuously from the anterior end of the tissue posteriorly. These results describe new morphogenic cell behaviors driving neural convergent extension and also define roles for signals from the mesoderm, up to and beyond late gastrulation, in patterning these cell behaviors.  相似文献   

8.
The establishment of cell polarity is crucial for embryonic cells to acquire their proper morphologies and functions, because cell alignment and intracellular events are coordinated in tissues during embryogenesis according to the cell polarity. Although much is known about the molecules involved in cell polarization, the direct trigger of the process remains largely obscure. We previously demonstrated that the tissue boundary between the chordamesoderm and lateral mesoderm of Xenopus laevis is important for chordamesodermal cell polarity. Here, we examined the intracellular calcium dynamics during boundary formation between two different tissues. In a combination culture of nodal-induced chordamesodermal explants and a heterogeneous tissue, such as ectoderm or lateral mesoderm, the chordamesodermal cells near the boundary frequently displayed intracellular calcium elevation; this frequency was significantly less when homogeneous explants were used. Inhibition of the intracellular calcium elevation blocked cell polarization in the chordamesodermal explants. We also observed frequent calcium waves near the boundary of the dorsal marginal zone (DMZ) dissected from an early gastrula-stage embryo. Optical sectioning revealed that where heterogeneous explants touched, the chordamesodermal surface formed a wedge with the narrow end tucked under the heterogeneous explant. No such configuration was seen between homogeneous explants. When physical force was exerted against a chordamesodermal explant with a glass needle at an angle similar to that created in the explant, or migrating chordamesodermal cells crawled beneath a silicone block, intracellular calcium elevation was frequent and cell polarization was induced. Finally, we demonstrated that a purinergic receptor, which is implicated in mechano-sensing, is required for such frequent calcium elevation in chordamesoderm and for cell polarization. This study raises the possibility that tissue-tissue interaction generates mechanical forces through cell-cell contact that initiates coordinated cell polarization through a transient increase in intracellular calcium.  相似文献   

9.
The establishment of heart mesoderm during Xenopus development has been examined using an assay for heart differentiation in explants and explant combinations in culture. Previous studies using urodele embryos have shown that the heart mesoderm is induced by the prospective pharyngeal endoderm during neurula and postneurula stages. In this study, we find that the specification of heart mesoderm must begin well before the end of gastrulation in Xenopus embryos. Explants of prospective heart mesoderm isolated from mid- or late neurula stages were capable of heart formation in nearly 100% of cases, indicating that the specification of heart mesoderm is complete by midneurula stages. Moreover, inclusion of pharyngeal endoderm had no statistically significant effect upon either the frequency of heart formation or the timing of the initiation of heartbeat in explants of prospective heart mesoderm isolated after the end of gastrulation. When the superficial pharyngeal endoderm was removed at the beginning of gastrulation, experimental embryos formed hearts, as did explants of prospective heart mesoderm from such embryos. These results indicate that the inductive interactions responsible for the establishment of heart mesoderm occur prior to the end of gastrulation and do not require the participation of the superficial pharyngeal endoderm.  相似文献   

10.
We have studied the response of Xenopus blastula ectoderm to fibroblast growth factor and to lithium ion. The properties of acidic and basic FGF are very similar showing a 50% induction level at 1-2 ng ml-1 and a progressive increase of muscle formation up to concentrations of 100-200 ng ml-1. The elongation of explants also shows a dose-response relationship. The minimum contact requirement for induction of ectoderm explants is about 90 min and the stage range of ectodermal competence extends from midblastula to early gastrula, both these figures resembling those obtained in embryological experiments with vegetal tissue as the inducer. Lithium chloride concentrations which produce anteriorization of whole embryos have no effect on isolated ectoderms unless accompanied by FGF. Simultaneous treatment with FGF and Li lead to a marked enhancement of both elongation and muscle formation over that produced by FGF alone. By contrast, ventral marginal explants show increased elongation and muscle formation if treated with lithium alone suggesting that they have already received a low-dose FGF treatment within the embryo. It is concluded that endogenous FGF may be solely responsible for inducing the ventral mesoderm and that dorsalization of ventral mesoderm to the level of somitic muscle might be achieved either by a very high local concentration of FGF in the dorsal region, or by the action of a second, synergistic, agent in the dorsal region.  相似文献   

11.
Ventral blood island mesoderm and dorsal lateral plate mesoderm were removed from Rana pipiens embryos at successive developmental stages (stages 13-19; 50-118 h) and cultured as individual explants in serum-free medium. After 5-7 days, the cultures were harvested, and differential counts were made of Wright-Giemsa-stained cells. Ventral blood island explants gave rise to cells of the myeloid lineage, suggesting that ventral blood island mesoderm was committed to hemopoiesis at the time of explant. Although erythrocytes were present in the cultures, granulocytes and monocyte/macrophages predominated. This differentiation profile occurred without the addition of any exogenous humoral factors. Monocyte/macrophages and immature precursor cells exhibited recurring inverse fluctuations with respect to one another. In all cases examined, cultures of dorsal lateral plate mesoderm showed marginal hemopoietic cell differentiation, suggesting a requirement for exogenous humoral factors and/or cell-cell interactions. When viewed in the context of previous studies from our laboratory, these results demonstrate that, in the amphibian embryo, there are two sources of hemopoietic stem cells separated both in space and time.  相似文献   

12.
It is known from work with amniote embryos that regional specification of the gut requires cell-cell signalling between the mesoderm and the endoderm. In recent years, much of the interest in Xenopus endoderm development has focused on events that occur before gastrulation and this work has led to a different model whereby regional specification of the endoderm is autonomous. In this paper, we examine the specification and differentiation of the endoderm in Xenopus using neurula and tail-bud-stage embryos and we show that the current hypothesis of stable autonomous regional specification is not correct. When the endoderm is isolated alone from neurula and tail bud stages, it remains fully viable but will not express markers of regional specification or differentiation. If mesoderm is present, regional markers are expressed. If recombinations are made between mesoderm and endoderm, then the endodermal markers expressed have the regional character of the mesoderm. Previous results with vegetal explants had shown that endodermal differentiation occurs cell-autonomously, in the absence of mesoderm. We have repeated these experiments and have found that the explants do in fact show some expression of mesoderm markers associated with lateral plate derivatives. We believe that the formation of mesoderm cells by the vegetal explants accounts for the apparent autonomous development of the endoderm. Since the fate map of the Xenopus gut shows that the mesoderm and endoderm of each level do not come together until tail bud stages, we conclude that stable regional specification of the endoderm must occur quite late, and as a result of inductive signals from the mesoderm.  相似文献   

13.
14.
Dorsalization of mesoderm induction by lithium   总被引:7,自引:0,他引:7  
Lithium dorsalizes the body plan of Xenopus embryos when administered at the 32-cell stage (K.R. Kao and R.P. Elinson, 1988, Dev. Biol. 127, 64-77). In this paper, we have attempted to determine the effects of lithium on mesoderm induction, in order to localize the target of action of lithium. In the 32-cell embryo, the vegetal-most tier 4 cells are able to induce dorsal development in the overlying, equatorial tier 3 cells (R.L. Gimlich and J.C. Gerhart, 1984, Dev. Biol. 104, 117-130). Our experiments show that microinjection of lithium into either tier 3 or tier 4 cells of ultraviolet-irradiated, dorsoanterior-deficient embryos rescues normal development. Lineage tracer studies show that only tier 3-injected cells contribute progeny to dorsal axial structures while tier 4-injected cells contribute progeny to endoderm. Sandwich explants between animal caps and ventral vegetal cells cause induction of large amounts of muscle in the explants if either caps or vegetal cells are pretreated with lithium. Similarly, fibroblast growth factor-mediated mesoderm induction is also modified by lithium so that muscle is induced instead of ventral mesoderm. We conclude that lithium dorsalizes the response of animal cells to mesoderm induction signals, while not acting directly as a mesoderm inducer itself. The target of action of lithium is likely the third tier of cells of the 32-cell embryo.  相似文献   

15.
We have analyzed cell behavior in the organizer region of the Xenopus laevis gastrula by making high resolution time-lapse recordings of cultured explants. The dorsal marginal zone, comprising among other tissues prospective notochord and somitic mesoderm, was cut from early gastrulae and cultured in a way that permits high resolution microscopy of the deep mesodermal cells, whose organized intercalation produces the dramatic movements of convergent extension. At first, the explants extend without much convergence. This initial expansion results from rapid radial intercalation, or exchange of cells between layers. During the second half of gastrulation, the explants begin to converge strongly toward the midline while continuing to extend vigorously. This second phase of extension is driven by mediolateral cell intercalation, the rearrangement of cells within each layer to lengthen and narrow the array. Toward the end of gastrulation, fissures separate the central notochord from the somitic mesoderm on each side, and cells in both tissues elongate mediolaterally as they intercalate. A detailed analysis of the spatial and temporal pattern of these behaviors shows that both radial and mediolateral intercalation begin first in anterior tissue, demonstrating that the anterior-posterior timing gradient so evident in the mesoderm of the neurula is already forming in the gastrula. Finally, time-lapse recordings of intact embryos reveal that radial intercalation takes places primarily before involution, while mediolateral intercalation begins as the mesoderm goes around the lip. We discuss the significance of these findings to our understanding of both the mechanics of gastrulation and the patterning of the dorsal axis.  相似文献   

16.
Activin is a potent inducer of mesoderm in amphibian embryos. We previously reported that low concentrations of activin could induce the formation of blood cells from Xenopus explants (animal caps). Both hematopoietic and vascular endothelial cell lineages are believed to share a common precursor, termed hemangioblasts. In this study, we tried to induce differentiation of vascular endothelial cells in aggregates derived from Xenopus animal caps. Aggregates formed from cells that were co-treated with activin and angiopoietin-2 expressed the vascular endothelial markers, X-msr, Xtie2 and Xegfl7. However, none of these aggregates expressed the hematopoietic marker genes, globin alpha T3, alpha T5, alpha A or GATA-1. We used microarray analysis to compare the gene expression profiles of aggregates treated with activin alone or with activin and angiopoietin. The combination, but not activin alone, induced expression of vascular-related genes such as Xl-fli and VEGF. These results demonstrate that treatment of dissociated animal cap cells with activin and angiopoietin-2 can induce differentiation of endothelial cells, and provides a promising model system for the in vitro study of blood vessel induction in vertebrates.  相似文献   

17.
Directional mesoderm cell migration in the Xenopus gastrula.   总被引:2,自引:0,他引:2  
The movement of the dorsal mesoderm across the blastocoel roof of the Xenopus gastrula is examined. We show that different parts of the mesoderm which can be distinguished by their morphogenetic behavior in the embryo are all able to migrate independently on the inner surface of the blastocoel roof. The direction of mesoderm cell migration is determined by guidance cues in the extracellular matrix of the blastocoel roof and by an intrinsic tissue polarity of the mesoderm. The mesodermal polarity shows the same orientation as the external guidance cues and is strongly expressed in the more posterior mesoderm. The guidance cues of the extracellular matrix are recognized by all parts of the dorsal mesoderm and even by nonmesodermal cells from other regions of the embryo. The extracellular matrix consists of a network of fibronectin-containing fibrils. The adhesiveness of this matrix does not vary along the axis of mesoderm movement, excluding haptotaxis as a guidance mechanism in this system. However, an intact fibronectin fibril structure is necessary for directional mesoderm cell migration. When the assembly of fibronectin into fibrils is inhibited, mesoderm explants still migrate on the amorphous extracellular matrix, but no longer directionally. It is proposed that polarized extracellular matrix fibrils may normally guide the migrating mesoderm to its target region.  相似文献   

18.
The differentiation of the presumptive mesoderm explants from different sectors of the early gastrula marginal zone was compared with that of the identical explants placed just after explantation into a medium free of divalent cations for 30 s. The development of the treated dorsal explants differed from that of control explants by the presence of well differentiated forebrain structures and the development of the explants from more ventral zones by a decrease in the occurrence of blood cells and nondifferentiated endoderm and an increase in occurrence of epithelioid structures, which form frequently deep invaginations. The shape of the treated explants was more organized and differentiated than that of the control explants. A conclusion has been reached that the development of epithelioid and forebrain structures in the explants is stimulated after a short-term disturbance of cell contacts.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号