首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G protein-coupled receptors (GPCRs) form dimeric or oligomeric complexes in vivo. However, the function of oligomerization in receptor-mediated G protein activation is unclear. Previous studies of the yeast alpha-factor receptor (STE2 gene product) have indicated that oligomerization promotes signaling. Here we have addressed the mechanism by which oligomerization facilitates G protein signaling by examining the ability of ligand binding- and G protein coupling-defective alpha-factor receptors to form complexes in vivo and to correct their signaling defects when co-expressed (trans complementation). Newly and previously identified receptor mutants indicated that ligand binding involves the exofacial end of transmembrane domain (TM) 4, whereas G protein coupling involves ic1, ic3, the C-terminal tail, and the intracellular ends of TM2 and TM3. Mutant receptors bearing substitutions in these domains formed homo-oligomeric or hetero-oligomeric complexes in vivo, as indicated by results of fluorescence resonance energy transfer experiments. Co-expression of ligand binding- and G protein coupling-defective mutant receptors did not significantly improve signaling. In contrast, co-expression of ic1 and ic3 mutations in trans but not in cis significantly increased signaling efficiency. Therefore, we suggest that subunits of the alpha-factor receptor: 1) are activated independently rather than cooperatively by agonist, and 2) function in a concerted fashion to promote G protein activation, possibly by contacting different subunits or regions of the G protein heterotrimer.  相似文献   

2.
Lin JC  Duell K  Saracino M  Konopka JB 《Biochemistry》2005,44(4):1278-1287
The alpha-factor receptor (Ste2p) stimulates mating of the yeast Saccharomyces cerevisiae. Ste2p belongs to the large family of G protein-coupled receptors that are characterized by seven transmembrane alpha-helices. Receptor activation is thought to involve changes in the packing of the transmembrane helix bundle. To identify residues that contribute to Ste2p activation, second-site suppressor mutations were isolated that restored function to defective receptors carrying either an F204S or Y266C substitution which affect residues at the extracellular ends of transmembrane domains 5 and 6, respectively. Thirty-five different suppressor mutations were identified. On their own, these mutations caused a range of phenotypes, including hypersensitivity, constitutive activity, altered ligand binding, and loss of function. The majority of the mutations affected residues in the transmembrane segments that are predicted to face the helix bundle. Many of the suppressor mutations caused constitutive receptor activity, suggesting they improved receptor function by partially restoring the balance between the active and inactive states. Analysis of mutations in transmembrane domain 7 implicated residues Ala281 and Thr282 in receptor activation. The A281T and T282A mutants were supersensitive to S. cerevisiae alpha-factor, but were defective in responding to a variant of alpha-factor produced by another species, Saccharomyces kluyveri. The A281T mutant also displayed 8.7-fold enhanced basal signaling. Interestingly, Ala281 and Thr282 are situated in approximately the same position as Lys296 in rhodopsin, which is covalently linked to retinal. These results suggest that transmembrane domain 7 plays a role in receptor activation in a wide range of G protein-coupled receptors from yeast to humans.  相似文献   

3.
Binding of the alpha-factor pheromone to its G-protein-coupled receptor (encoded by STE2) activates the mating pathway in MATa yeast cells. To investigate whether specific interactions between the receptor and the G protein occur prior to ligand binding, we analyzed dominant-negative mutant receptors that compete with wild-type receptors for G proteins, and we analyzed the ability of receptors to suppress the constitutive signaling activity of mutant Galpha subunits in an alpha-factor-independent manner. Although the amino acid substitution L236H in the third intracellular loop of the receptor impairs G-protein activation, this substitution had no influence on the ability of the dominant-negative receptors to sequester G proteins or on the ability of receptors to suppress the GPA1-A345T mutant Galpha subunit. In contrast, removal of the cytoplasmic C-terminal domain of the receptor eliminated both of these activities even though the C-terminal domain is unnecessary for G-protein activation. Moreover, the alpha-factor-independent signaling activity of ste2-P258L mutant receptors was inhibited by the coexpression of wild-type receptors but not by coexpression of truncated receptors lacking the C-terminal domain. Deletion analysis suggested that the distal half of the C-terminal domain is critical for sequestration of G proteins. The C-terminal domain was also found to influence the affinity of the receptor for alpha-factor in cells lacking G proteins. These results suggest that the C-terminal cytoplasmic domain of the alpha-factor receptor, in addition to its role in receptor downregulation, promotes the formation of receptor-G-protein preactivation complexes.  相似文献   

4.
To identify functional domains of G-protein-coupled receptors that control pathway activation, ligand discrimination, and receptor regulation, we have used as a model the alpha-factor receptor (STE2 gene product) of the yeast Saccharomyces cerevisiae. From a collection of random mutations introduced in the region coding for the third cytoplasmic loop of Ste2p, six ste2sst alleles were identified by genetic screening methods that increased alpha-factor sensitivity 2.5- to 15-fold. The phenotypic effects of ste2sst and sst2 mutations were not additive, consistent with models in which the third cytoplasmic loop of the alpha-factor receptor and the regulatory protein Sst2p control related aspects of pheromone response and/or desensitization. Four ste2sst mutations did not dramatically alter cell surface expression or agonist binding affinity of the receptor; however, they did permit detectable responses to an alpha-factor antagonist. One ste2sst allele increased receptor binding affinity for alpha-factor and elicited stronger responses to antagonist. Results of competition binding experiments indicated that wild-type and representative mutant receptors bound antagonist with similar affinities. The antagonist-responsive phenotypes caused by ste2sst alleles were therefore due to defects in the ability of receptors to discriminate between agonist and antagonist peptides. One ste2sst mutation caused rapid, ligand-independent internalization of the receptor. These results demonstrate that the third cytoplasmic loop of the alpha-factor receptor is a multifunctional regulatory domain that controls pathway activation and/or desensitization and influences the processes of receptor activation, ligand discrimination, and internalization.  相似文献   

5.
The α-mating pheromone receptor encoded by the STE2 gene of the yeast Saccharomyces cerevisiae is a G protein-coupled receptor (GPCR) that is homologous to the large family of GPCRs that mediate multiple types of signal transduction in mammals. We have screened libraries of mutant receptors to identify dominant negative alleles that are capable of interfering with the function of a co-expressed normal receptor. Two dominant negative alleles have been recovered in this manner. In addition, we find that previously isolated loss-of-function mutations in the α-factor receptor exhibit dominant negative effects. Detection of the dominant effects requires high-level expression of the mutant receptors but does not require a high ratio of mutant to normal receptors. Cellular levels of the normal receptors are not affected by co-expression of the dominant negative alleles. Expression of the mutant receptors does not interfere with constitutive signaling in a strain that lacks the G protein α subunit encoded by GPA1, indicating that interference with signaling occurs at the level of the receptor or the interacting G protein. Expression of increased levels of G protein subunits partially reverses the dominant negative effects. The dominant negative behavior of the mutant receptors is diminished by deletion of the SST2 gene, which encodes an RGS (Regulator of G protein Signaling) protein involved in desensitization of pheromone signaling. The most likely explanation for the dominant negative effects of the mutations appears to be the existence of an interaction between unactivated receptors and the trimeric G protein that titrates the G protein away from the normal receptors or renders the G protein insensitive to receptor activation. This interaction appears to be mediated by the SST2 gene product.  相似文献   

6.
Bajaj A  Celić A  Ding FX  Naider F  Becker JM  Dumont ME 《Biochemistry》2004,43(42):13564-13578
The yeast alpha-factor receptor encoded by the STE2 gene is a member of the extended family of G protein coupled receptors (GPCRs) involved in a wide variety of signal transduction pathways. We report here the use of a fluorescent alpha-factor analogue [K(7)(NBD), Nle(12)] alpha-factor (Lys(7) (7-nitrobenz-2-oxa-1,3-diazol-4-yl), norleucine(12) alpha-factor) in conjunction with flow cytometry and fluorescence microscopy to study binding of ligand to the receptor. Internalization of the fluorescent ligand following receptor binding can be monitored by fluorescence microscopy. The use of flow cytometry to detect binding of the fluorescent ligand to intact yeast cells provides a sensitive and reproducible assay that can be conducted at low cell densities and is relatively insensitive to fluorescence of unbound and nonspecifically bound ligand. Using this assay, we determined that some receptor alleles expressed in cells lacking the G protein alpha subunit exhibit a higher equilibrium binding affinity for ligand than the same alleles expressed in isogenic cells containing the normal complement of G protein subunits. On the basis of time-dependent changes in the intensity and shape of the emission spectrum of [K(7)(NBD),Nle(12)] alpha-factor during binding, we infer that the ligand associates with receptors via a two-step process involving an initial interaction that places the fluorophore in a hydrophobic environment, followed by a conversion to a state in which the fluorophore moves to a more polar environment.  相似文献   

7.
The α-mating pheromone receptor encoded by the STE2 gene of the yeast Saccharomyces cerevisiae is a G protein-coupled receptor (GPCR) that is homologous to the large family of GPCRs that mediate multiple types of signal transduction in mammals. We have screened libraries of mutant receptors to identify dominant negative alleles that are capable of interfering with the function of a co-expressed normal receptor. Two dominant negative alleles have been recovered in this manner. In addition, we find that previously isolated loss-of-function mutations in the α-factor receptor exhibit dominant negative effects. Detection of the dominant effects requires high-level expression of the mutant receptors but does not require a high ratio of mutant to normal receptors. Cellular levels of the normal receptors are not affected by co-expression of the dominant negative alleles. Expression of the mutant receptors does not interfere with constitutive signaling in a strain that lacks the G protein α subunit encoded by GPA1, indicating that interference with signaling occurs at the level of the receptor or the interacting G protein. Expression of increased levels of G protein subunits partially reverses the dominant negative effects. The dominant negative behavior of the mutant receptors is diminished by deletion of the SST2 gene, which encodes an RGS (Regulator of G protein Signaling) protein involved in desensitization of pheromone signaling. The most likely explanation for the dominant negative effects of the mutations appears to be the existence of an interaction between unactivated receptors and the trimeric G protein that titrates the G protein away from the normal receptors or renders the G protein insensitive to receptor activation. This interaction appears to be mediated by the SST2 gene product. Received: 15 January 1999 / Accepted: 25 March 1999  相似文献   

8.
Mutations in the Saccharomyces cerevisiae alpha-factor receptor that lead to improved response to Saccharomyces kluyveri alpha-factor were identified and sequenced. Mutants were isolated from cells bearing randomly mutagenized receptor gene (STE2) plasmids by an in vivo screen. Five mutations lead to substitutions in hydrophobic segments in the core of the receptor (M54I, S145L, S145L-S219L, A229V, L255S-S288P). Remarkably, strains expressing these mutant receptors exhibited positive pheromone responses to desTrp1,Ala3-alpha-factor, an analog that normally blocks these responses. The M54I mutation appeared to affect only ligand specificity. The other mutations conferred additional effects on signaling or recovery. Two mutants were more sensitive to alpha-factor than wild type (S145L, A229V). One mutant was more sensitive to alpha-factor-induced cell cycle arrest initially, but then recovered more efficiently (S145L-S219L). One mutant (L255S-S288P) conferred positive pheromone responses to alpha-factor as assayed by FUS1-lacZ reporter induction, but did not display growth arrest. The hydrophobic receptor core thus appears to control activation by some ligands and to play roles in aspects of signal transduction and recovery.  相似文献   

9.
The alpha-factor receptor (STE2) stimulates a G protein signaling pathway that promotes mating of the yeast Saccharomyces cerevisiae. Previous random mutagenesis studies implicated residues in the regions near the extracellular ends of the transmembrane domains in ligand activation. In this study, systematic Cys scanning mutagenesis across the ends of transmembrane domains 5 and 6 identified two residues, Phe(204) and Tyr(266), that were important for receptor signaling. These residues play a specific role in responding to alpha-factor since the F204C and Y266C substituted receptors responded to an alternative agonist (novobiocin). To better define the structure of this region, the Cys-substituted mutant receptors were assayed for reactivity with a thiol-specific probe that does not react with membrane-imbedded residues. A drop in reactivity coincided with residues likely to be buried in the membrane. Interestingly, both Phe(204) and Tyr(266) are located very near the interface region. However, these assays predict that Phe(204) is accessible at the surface of the receptor, consistent with the strong defect in binding alpha-factor caused by mutating this residue. In contrast, Tyr(266) was not accessible. This correlates with the ability of Y266C mutant receptors to bind alpha-factor and suggests that this residue is involved in the subsequent triggering of receptor activation. These results highlight the role of aromatic residues near the ends of the transmembrane segments in the alpha-factor receptor, and suggest that similar aromatic residues may play an important role in other G protein-coupled receptors.  相似文献   

10.
Serpentine receptors relay hormonal or sensory stimuli to heterotrimeric guanine nucleotide-binding proteins (G proteins). In most G protein-coupled receptors (GPCRs), binding of the agonist ligand elicits both stimulation of the G protein and endocytosis of the receptor. We have begun to address whether these responses reflect the same sets of conformational changes in the receptor using constitutively active mutants of the human complement factor 5a receptor (C5aR). Two different mutant receptors both constitutively activate G protein-mediated responses, but one (F251A) is endocytosed only in response to ligand stimulation, while the other (NQ) is constitutively internalized in the absence of ligand. Both the constitutive and ligand-dependent endocytosis are accompanied by recruitment of beta-arrestin to the receptor. An inactivating mutation (N296A) complements the NQ mutation, producing a receptor that is activated only upon exposure to agonist; this revertant receptor (NQ/N296A) is nevertheless constitutively endocytosed. Thus one mutant (F251A) requires agonist for triggering endocytosis but not for activation of the downstream G protein signal, while another (NQ/N296A) behaves in the opposite fashion. Dissociation of two responses normally dependent on agonist binding indicates that the corresponding functions of an activated GPCR reflect different sets of changes in the receptor's conformation .  相似文献   

11.
12.
Glycoprotein hormone receptors are G protein-coupled receptors with ligand-binding ectodomains consisting of leucine-rich repeats. The ectodomain is connected by a conserved cysteine-rich hinge region to the seven transmembrane (TM) region. Gain-of-function mutants of luteinizing hormone (LH) and thyroid-stimulating hormone receptors found in patients allowed identification of residues important for receptor activation. Based on constitutively active mutations at Ser-281 in the hinge region of the thyroid-stimulating hormone receptor, we mutated the conserved serine in the LH (S277I) and follicle-stimulating hormone receptors (S273I) and observed increased basal cAMP production and ligand affinity by mutant receptors. For the LH receptor, conversion of Ser-277 to all natural amino acids led to varying degrees of receptor activation. Hydropathy index analysis indicated that substitution of neutral serine with selective nonpolar hydrophobic residues (Leu>Val>Met>Ile) confers constitutive receptor activation whereas serine deletion or substitution with charged Arg, Lys, or Asp led to defective receptor expression. Furthermore, mutation of the angular proline near Ser-273 to flexible Gly also led to receptor activation. The findings suggest the ectodomain of glycoprotein hormone receptors constrain the TM region. Point mutations in the hinge region of these proteins, or ligand binding to these receptors, could cause conformational changes in the TM region that result in G(s) activation.  相似文献   

13.
The majority of polycythemia vera (PV) patients harbor a unique somatic mutation (V617F) in the pseudokinase domain of JAK2, which leads to constitutive signaling. Here we show that the homologous mutations in JAK1 (V658F) and in Tyk2 (V678F) lead to constitutive activation of these kinases. Their expression induces autonomous growth of cytokine-dependent cells and constitutive activation of STAT5, STAT3, mitogen-activated protein kinase, and Akt signaling in Ba/F3 cells. The mutant JAKs exhibit constitutive signaling also when expressed in fibrosarcoma cells deficient in JAK proteins. Expression of the JAK2 V617F mutant renders Ba/F3 cells hypersensitive to insulin-like growth factor 1 (IGF1), which is a hallmark of PV erythroid progenitors. Upon selection of Ba/F3 cells for autonomous growth induced by the JAK2 V617F mutant, cells respond to IGF1 by activating STAT5, STAT3, Erk1/2, and Akt on top of the constitutive activation characteristic of autonomous cells. The synergic effect on proliferation and STAT activation appears specific to the JAK2 V617F mutant. Our results show that the homologous V617F mutation induces activation of JAK1 and Tyk2, suggesting a common mechanism of activation for the JAK1, JAK2, and Tyk2 mutants. JAK3 is not activated by the homologous mutation M592F, despite the presence of the conserved GVC preceding sequence. We suggest that mutations in the JAK1 and Tyk2 genes may be identified as initial molecular defects in human cancers and autoimmune diseases.  相似文献   

14.
Lee BK  Lee YH  Hauser M  Son CD  Khare S  Naider F  Becker JM 《Biochemistry》2002,41(46):13681-13689
To identify interactions between Ste2p, a G protein-coupled receptor of the yeast Saccharomyces cerevisiae, and its tridecapeptide ligand, alpha-factor (WHWLQLKPGQPMY), a variety of alpha-factor analogues were used in conjunction with site-directed mutagenesis of a targeted portion of Ste2p transmembrane domain six. Alanine substitution of residues in the 262-270 region of Ste2p did not affect pheromone binding or signal transduction, except for the Y266A mutant, which did not transduce signal yet exhibited only a small decrease in alpha-factor binding affinity. Substitutions with Ser, Leu, or Lys at Y266 also generated signaling-defective receptors. In contrast, Phe or Trp substitution at Y266 retained receptor function, suggesting that aromaticity at this position was critical. When coexpressed with WT receptor, the Y266A receptor exhibited a strong dominant-negative phenotype, indicating that this mutant bound G protein. A partial tryptic digest revealed that, in the presence of agonist, a different digestion profile for Y266A receptor was generated in comparison to that for WT receptor. The difference in trypsin-sensitive sites and their negative dominance indicated that the Y266A receptor was not able to switch into an "activated" conformation upon ligand binding. In comparison to WT Ste2p, the mutantY266A receptor showed increased binding affinity for N-terminal, alanine-substituted alpha-factor analogues (residues 1-4) and the antagonist [desW(1),desH(2)]alpha-factor. A substantial decrease in affinity was observed for alpha-factor analogues with Ala substitutions from residues 5-13. The results suggest that Y266 is part of the binding pocket that recognizes the N-terminal portion of alpha-factor and is involved in the transformation of Ste2p into an activated state upon agonist binding.  相似文献   

15.
We have introduced a series of point mutations into the human opioid receptor-like (ORL1) receptor and characterized them for their ability to constitutively activate G protein-coupled receptor signalling pathways. Among the 12 mutants generated, mutation at Asn133 (N133W) gave increased basal signalling through three separate pathways. N133W increased the basal activity of G14- and G16-dependent pathways by two- to three-fold. The constitutive activity of the mutant was confirmed by the finding that the enhanced activity is dependent on the level of receptor expression. In HEK-293 cells stably expressing N133W, signalling through Gi/o-dependent pathways was also observed. Radioligand binding studies revealed that the affinity for nociceptin of the wild-type ORL1 receptor and the N133W mutant do not differ significantly, suggesting that the ligand binding and signalling functions of constitutively active mutants of G protein-coupled receptors are not necessarily intrinsically linked. In conclusion, our results demonstrate that a mutation in the third transmembrane domain is able to increase the basal signalling activity of the human ORL1 receptor.  相似文献   

16.
17.
The alpha-factor pheromone receptor (STE2) activates a G protein signal pathway that induces conjugation of the yeast Saccharomyces cerevisiae. Previous studies implicated the third intracellular loop of this receptor in G protein activation. Therefore, the roles of transmembrane domains five and six (TMD5 and -6) that bracket the third intracellular loop were analyzed by scanning mutagenesis in which each residue was substituted with cysteine. Out of 42 mutants examined, four constitutive mutants and two strong loss-of-function mutants were identified. Double mutants combining Cys substitutions in TMD5 and TMD6 gave a broader range of phenotypes. Interestingly, a V223C mutation in TMD5 caused constitutive activity when combined with the L247C, L248C, or S251C mutations in TMD6. Also, the L226C mutation in TMD5 caused constitutive activity when combined with either the M250C or S251C mutations in TMD6. The residues affected by these mutations are predicted to fall on one side of their respective helices, suggesting that they may interact. In support of this, cysteines substituted at position 223 in TMD5 and position 247 in TMD6 formed a disulfide bond, providing the first direct evidence of an interaction between these transmembrane domains in the alpha-factor receptor. Altogether, these results identify an important region of interaction between conserved hydrophobic regions at the base of TMD5 and TMD6 that is required for the proper regulation of receptor signaling.  相似文献   

18.
The alpha-factor receptor of the yeast Saccharomyces cerevisiae encoded by the STE2 gene is a member of the large family of G protein-coupled receptors (GPCRs) that mediate multiple signal transduction pathways. The third intracellular loop of GPCRs has been identified as a likely site of interaction with G proteins. To determine the extent of allowed substitutions within this loop, we subjected a stretch of 21 amino acids (Leu228-Leu248) to intensive random mutagenesis and screened multiply substituted alleles for receptor function. The 91 partially functional mutant alleles that were recovered contained 96 unique amino acid substitutions. Every position in this region can be replaced with at least two other types of amino acids without a significant effect on function. The tolerance for nonconservative substitutions indicates that activation of the G protein by ligand-bound receptors involves multiple intramolecular interactions that do not strongly depend on particular sequence elements. Many of the functional mutant alleles exhibit greater than normal levels of signaling, consistent with an inhibitory role for the third intracellular loop. Removal of increasing numbers of positively charged residues from the loop by site-directed mutagenesis causes a progressive loss of signaling function, indicating that the overall net charge of the loop is important for receptor function. Introduction of negatively charged residues also leads to a reduced level of signaling. The defects in signaling caused by substitution of charged amino acids are not caused by changes in the abundance of receptors at the cell surface.  相似文献   

19.
We have developed a procedure in which disulfide cross-links are used to identify regions of proteins that undergo functionally important intramolecular motion. The approach was applied to the identification of disulfide bonds that stabilize the active state of the yeast α-mating pheromone receptor Ste2p, a member of the superfamily of G protein-coupled receptors. Cysteine residues were introduced at random positions in targeted regions of a starting allele of Ste2p that completely lacks cysteines. Libraries of mutated receptors were then screened for alleles that exhibit constitutive signaling. Two strongly activated alleles were recovered containing cysteine residues in transmembrane (TM) segments 5 and 6. Constitutive activity of these alleles was dependent on the presence of both introduced cysteines and was sensitive to reducing agent. Cross-linked peptides derived from the mutant receptors were detected by immunoblotting. Additional sites of cross-linking between TM segments 5 and 6 that did not lead to constitutive activation were also identified. These results indicate that relative motion of the TM segments 5 and 6 in the extracellular half of the membrane is sufficient to activate the receptor and that TM segment 6, but not TM segment 5, exhibits rotational mobility that is not associated with receptor activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号