首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: Apolipoproteins have been implicated in the salvage and reutilization of myelin cholesterol during Wallerian degeneration and the subsequent nerve regeneration. Current evidence suggests that myelin cholesterol complexes with apolipoproteins E and A-I to form lipoproteins that are taken up via low-density lipoprotein receptors on myelinating Schwann cells. We recently reported, however, that apolipoprotein E is not required for nerve regeneration or reutilization of myelin cholesterol. We have now investigated nerve regeneration and the reutilization of cholesterol in mutant mice deficient in both apolipoproteins E and A-I. Morphologic examination of nerves 4 and 12 weeks after crush injury revealed that regeneration proceeded at a normal rate in the absence of these apolipoproteins. Autoradiography of regenerating nerves indicated that prelabeled myelin lipid was reutilized in the regenerating myelin. 3-Hydroxy-3-methylglutaryl-CoA reductase, the rate-limiting enzyme in cholesterol synthesis, was down-regulated in the regenerating nerves, indicative of cholesterol uptake via lipoproteins. Prelabeled myelin cholesterol was present in lipoprotein fractions isolated from crushed nerves of mutant mice. These data suggest that there is considerable redundancy in the process of cholesterol reutilization within nerve, and that apolipoproteins other than apolipoproteins E and A-I may be involved in the recycling of myelin cholesterol.  相似文献   

2.
The pattern of synthesis of rapidly-labelled RNA of hen sciatic nerve was studied during Wallerian degeneration. At 2,4,8, 16 and 30 days of degeneration the proximal and distal stumps of the severed nerve as well as the intact contralateral sciatic nerve (functional control) were excised and incubated with either [5-3H]uridine or [2-14C]uridine for 0.5 h. The electrophoretic pattern of RNA from the normal adult sciatic nerve showed that most of the radioactivity was incorporated into RNA species migrating between the 18 S and 4 S components of the bulk RNA. The synthesis of RNA was sensitive to actinomycin-D, an indication that it was directed by a DNA template. The electrophoretic patterns of the rapidly-labelled RNA in the proximal and distal nerve stumps demonstrated a change following nerve section. After 2–4 days of Wallerian degeneration the degenerating distal nerves incorporated more radioactivity in the 4 S region than the corresponding controls, but at 8 and 16-days after degeneration relatively more label appeared in higher molecular weight RNA species. In the intact sciatic nerve of the operated hens progressively more radioactivity was detected in the 4 S region with increasing time after the contralateral nerve section. At each stage of Wallerian degeneration the specific radioactivities of RNA in the control nerves from experimental hens were higher than those of the normal adult sciatic nerve. These results indicated a change of RNA metabolism in increased functional activity and during Wallerian degeneration.  相似文献   

3.
One sciatic nerve of a White Leghorn hen was severed and the distal portion was allowed to undergo Wallerian degeneration. The change in histamine and DNA concentration and mast cell number was measured at different times following nerve sectioning in the proximal regenerating, distal degenerating, and intact, contralateral nerves. The experimental results revealed a significant accumulation of histamine in the proximal desheathed segment and in the contralateral “functional nerve,” whereas the biogenic amine in the distal desheathed nerve significantly decreased. The pattern of change of histamine in the distal and proximal nerve sheaths was different: it dropped at 2 h and then rose in the later stages of Wallerian degeneration. In the distal desheathed nerves and in both the proximal and distal nerve sheaths DNA increased significantly by 14 days. The number of mast cells appeared to be highest in the 14-day distal nerve and in the 7-day proximal nerve sheaths. These results support a dual localization of histamine in the peripheral nerve, and are consistent with the interpretation that the amine has either some role in neurotransmission or in the process of growth and regeneration.  相似文献   

4.
The intercellular cell adhesion molecule-1 (ICAM-1) has been implicated in the recruitment of immune cells during inflammatory processes. Previous studies investigating its involvement in the process of Wallerian degeneration and focusing on its potential role in macrophage recruitement have come to controversial conclusions. To examine whether Wallerian degeneration is altered in the absence of ICAM-1, we have analyzed changes in the expression of axonal and Schwann cell markers following sciatic nerve crush in wildtype and ICAM-1-deficient mice. We report that the lack of ICAM-1 leads to impaired axonal degeneration and regeneration and to alterations in Schwann cell responses following sciatic nerve crush. Degradation of neurofilament protein, the collapse of axonal profiles, and the re-expression of neurofilament proteins are substantially delayed in the distal nerve segment of ICAM-1-/- mice. In contrast, the degradation of myelin, as determined by immunostaining for myelin protein zero, is unaltered in the mutants. Upregulation of GAP-43 and p75 neurotrophin receptor (p75NTR) expression, characteristic for Schwann cells dedifferentiating in response to nerve injury, is differentially altered in the mutant animals. These results indicate that ICAM-1 is essential for the normal progression of axonal degeneration and regeneration in distal segments of injured peripheral nerves.  相似文献   

5.
Changes of lipid, free fatty acid, protein, DNA, and RNA content in proximal and distal segments of regenerating sciatic nerve, from 14 to 120 days after crush, were determined. During the early stage of Wallerian degeneration, a marked decrease of phospholipid, cerebroside and sulfatide content and, in contrast, a marked increase of protein, DNA, RNA, and free fatty acid content, in the distal segment of crushed nerve compared to control, was observed. A gradual increase of phospholipid, cerebroside, and sulfatide levels, approaching normal values, and a gradual slope in the increase of protein, DNA, RNA, and free fatty acid levels over the ensuing time periods of regeneration was seen. Total cholesterol content was relatively constant during regeneration, slightly increasing at day 120. The activity of 2,3-cyclic nucleotide 3-phosphodiesterase (CNPase) of myelin fraction purified from distal segment of regenerating sciatic nerve showed a significant increase in the 30–120 day regenerating period. A marked increase of the incorporation of [2-3H]glycerol and of [Me-14C]choline into myelin lipids of distal segment of regenerating nerve, was found. Labeling of myelin lipids with [3H]oleic acid (injected intravenously seven days before crush) support the evidence that a similar pattern of degeneration exists between two different types of trauma, i.e. nerve crush or cut. The findings suggest that, in the distal segment of crushed nerve, the lipid content as well as the myelin lipid synthesis increase as the regeneration period proceeds.  相似文献   

6.
The successful removal of damaged myelin sheaths during Wallerian degeneration (WD) is essential for ensuring structural remodelling and functional recovery following traumatic peripheral nerve injury (PNI). Recent studies have established that autophagy involves myelin phagocytosis and cellular homoeostasis, and its disorder impairs myelin clearance. Based on the role of basic fibroblast growth factor (bFGF) on exerting neuroprotection and angiogenesis during nerve tissue regeneration, we now explicitly focus on the issue about whether the therapeutic effect of bFGF on supporting nerve regeneration is closely related to accelerate the autophagic clearance of myelin debris during WD. Using sciatic nerve crushed model, we found that bFGF remarkedly improved axonal outgrowth and nerve reconstruction at the early phase of PNI (14 days after PNI). More importantly, we further observed that bFGF could enhance phagocytic capacity of Schwann cells (SCs) to engulf myelin debris. Additionally, this enhancing effect is accomplished by autophagy activation and the increase of autophagy flux by immunoblotting and immune-histochemical analyses. Taken together, our data suggest that the action of bFGF on modulating early peripheral nerve regeneration is closely associated with myelin debris removal by SCs, which might result in SC-mediated autophagy activation, highlighting its insight molecular mechanism as a neuroprotective agent for repairing PNI.  相似文献   

7.
Abstract: The concentration of apolipoprotein E (apoE), a high-affinity ligand for the low-density lipoprotein receptor, increases dramatically in peripheral nerve following injury. This endoneurial apoE is thought to play an important role in the redistribution of lipids from the degenerating axonal and myelin membranes to the regenerating axons and myelin sheaths. The importance of apoE in nerve repair was examined using mutant mice that lack apoE. We show that at 2 and 4 weeks following sciatic nerve crush, regenerating nerves in apoE-deficient mice were morphologically similar to regenerating nerves in control animals, indicating that apoE is not essential for peripheral nerve repair. Moreover, cholesterol synthesis was reduced in regenerating nerves of apoE-deficient mice as much as in regenerating nerves of control animals. These results suggest that the intraneural conservation and reutilization of cholesterol following nerve injury do not require apoE.  相似文献   

8.
Remyelination is an important aspect of nerve regeneration after nerve injury but the underlying mechanisms are not fully understood. The neurotrophin receptor, p75(NTR), in activated Schwann cells in the Wallerian degenerated nerve is up-regulated and may play a role in the remyelination of regenerating peripheral nerves. In the present study, the role of p75(NTR) in remyelination of the sciatic nerve was investigated in p75(NTR) mutant mice. Histological results showed that the number of myelinated axons and thickness of myelin sheath in the injured sciatic nerves were reduced in mutant mice compared with wild-type mice. The myelin sheath of axons in the intact sciatic nerve of adult mutant mice is also thinner than that of wild-type mice. Real-time RT-PCR showed that mRNA levels for myelin basic protein and P0 in the injured sciatic nerves were significantly reduced in p75(NTR) mutant animals. Western blots also showed a significant reduction of P0 protein in the injured sciatic nerves of mutant animals. These results suggest that p75(NTR) is important for the myelinogenesis during the regeneration of peripheral nerves after injury.  相似文献   

9.
10.
The recovery, electrophoretic composition and synthesis of the myelin, particulate protein and soluble protein subfractions of rat sciatic nerve were compared in normal, sham-operated, and degenerating rat sciatic nerve at one, three and five days after neurotomy. Both single and double isotope methods were used to measure changes in synthesis in vitro and double isotope methods were used in vivo. The wet weights of nerves undergoing Wallerian degeneration for 5 days increased by 40 percent compared to normal and sham-operated nerves. The recovery, specific radioactivity, and synthesis of the myelin was reduced. The effect on myelin protein synthesis was similar in vitro and in vivo. The myelin loss was relatively constant in amount (30–40 g) regardless of differences in nerve sizes of young and old rats, consequently the percentage of myelin loss was inversely proportional to nerve size.The recovery of particulate protein increased, its rate of synthesis remained unchanged, and accordingly the specific radioactivity was decreased. The recovery, specific radioactivity, and the rate of synthesis of the soluble protein fraction were all elevated. The protein composition of the three fractions, as analyzed qualitatively by polyacrylamide disc gel electrophoresis, remained essentially unchanged through five days of degeneration.With regard to comparisons of the single and double isotope methods, results shows that the latter are more ideally suited to measuring changes in synthesis during the non-steady state conditions that are characteristics of rapid degeneration.  相似文献   

11.
The simultaneous incorporation of [3H]fucose and [1-14C]leucine into normal rat sciatic nerve was examined using an in vitro incubation model. A linear rate of protein precursor uptake was found in purified myelin protein over 1/2–6 hr of incubation utilizing a supplemented medium containing amino acids. This model was then used to examine myelin protein synthesis in nerves undergoing degeneration at 1–4 days following a crush injury. Data showed a statistically significant decrease in the ratio of fucose to leucine at 2, 3, and 4 days of degeneration, which was the consequence of a significant increase in leucine uptake. These results, plus substantial protein recovery in axotomized nerves, are indicative of active synthesis of proteins that purify with myelin during early Wallerian degeneration.  相似文献   

12.
The axonal transport of putrescine or its polyamine derivatives spermidine or spermine is a subject of some debate. We investigated this question by injecting [3H]putrescine into the lumbar spinal cord of the rat and measuring the accumulation of radioactivity central to ligatures placed on intact and regenerating sciatic nerves. In normal nerves, approximately twice as much radioactivity built up proximal to these ligatures 2 or 3 days after injection than at more distal ligatures used to control for accumulation of radioactivity which might be due to tissue damage alone. In regenerating nerves the amount of radioactivity accumulating at the ligature was approximately five times that at the distal ligature and two to three times greater than in intact nerves. The identity of the radioactivity in regenerating nerves, determined on an amino acid analyzer, was found to be primarily spermidine and an unknown compound that migrated as a frontal elution peak. Autoradiographic analysis showed that the radioactivity was largely confined to axons, but a significant amount of the silver grains was associated with Schwann cells and myelin sheaths surrounding labeled axons in both intact and regenerating nerves. The data indicate that polyamine derivatives of putrescine are transported axonally in rat sciatic nerves, and some of this transported material accumulates in Schwann cells surrounding the labeled axons. These processes are apparently augmented during regeneration of the injured axons.  相似文献   

13.
AimsAfter peripheral nerve injury, p75NTR was upregulated in Schwann cells of the Wallerian degenerative nerves and in motor neurons but down-regulated in the injured sensory neurons. As p75NTR in neurons mediates signals of both neurotrophins and inhibitory factors, it is regarded as a therapeutic target for the treatment of neurodegeneration. However, its physiological function in the nerve regeneration is not fully understood. In the present study, we aimed to examine the role of p75NTR in the regeneration of peripheral nerves.Main methodsIn p75NTR knockout mice (exon III deletion), the sciatic nerves and facial nerves on one side were crushed and regenerating neurons in the facial nuclei and in the dorsal root ganglia were labelled by Fast Blue. The regenerating fibres in the sciatic nerve were also labelled by an anterograde tracer and by immunohistochemistry.Key findingsThe results showed that the axonal growth of injured axons in the sciatic nerve of p75NTR mutant mice was significantly retarded. The number of regenerated neurons in the dorsal root ganglia and in the facial nuclei in p75NTR mutant mice was significantly reduced. Immunohistochemical staining of regenerating axons also showed the reduction in nerve regeneration in p75NTR mutant mice.SignificanceOur data suggest that p75NTR plays an important role in the regeneration of injured peripheral nerves.  相似文献   

14.
The rapid accumulation of myelin in the peripheral nervous system during the early postnatal period requires large amounts of cholesterol, a major myelin lipid. All of the cholesterol accumulating in the developing rat sciatic nerve is synthesized locally within the nerve, rather than being derived from the supply in lipoproteins in the systemic circulation (Jurevics and Morell, J. Lipid Res. 5:112–120; 1994). Since this lack of utilization of circulating cholesterol may relate to exclusion by the blood-nerve barrier, we examined the sources of cholesterol needed for regeneration following nerve injury, when the blood-nerve barrier is breached. One sciatic nerve was crushed or transected, and at various times later, the rate of cholesterol accumulation was compared with the rate of local in vivo synthesis of cholesterol within the nerve, utilizing intraperitoneally injected 3H2O as precursor. The accumulation of additional cholesterol in nerve during regeneration and remyelination could all be accounted for by that locally synthesized within the nerve. There was also an increase in cholesterol esters in injured nerve segments; in crushed nerves, these levels decreased during regeneration and remyelination, consistent with reutilization of cholesterol originally salvaged by phagocytic macrophages and Schwann cells. Thus, regeneration and remyelination following injury in sciatic nerve utilizes both salvaged cholesterol and cholesterol synthesized locally within the nerve, but not cholesterol from the circulation.  相似文献   

15.
To study the involvement of cholesterol esters in myelination and demyelination, we determined the concentration of free cholesterol and cholesterol esters and the activity of hydrolytic cholesterol esterase (sterol ester hydrolase; EC 3.1.1.13) in hen sciatic nerve during Wallerian degeneration. A progressive increase in the ratio of cholesterol ester to free cholesterol was observed in the degenerating nerve at 8, 16 and 32 days after nerve section. Hydrolytic cholesterol esterase activity decreased progressively in the degenerating nerves at the same time. In addition we measured the ratio of RNA to DNA, and the activity of the NADP+-dependent isocitrate dehydrogenase [L8-isocitrate: NADP oxidoreductase (decarboxylating); EC 1.1.1.42] at 8, 16 and 32 days after nerve section. The RNA to DNA ratios decreased progressively in the degenerating nerves. NADP+-dependent isocitrate dehydrogenase increased in activity after nerve section, reaching a peak at 16 days.  相似文献   

16.
LYSOSOMES IN THE RAT SCIATIC NERVE FOLLOWING CRUSH   总被引:3,自引:0,他引:3       下载免费PDF全文
Peripheral nerves undergoing degeneration are favorable material for studying the types, origins, and functions of lysosomes. The following lysosomes are described: (a) Autophagic vacuoles in altered Schwann cells. Within these vacuoles the myelin and much of the axoplasm which it encloses in the normal nerve are degraded (Wallerian degeneration). The delimiting membranes of the vacuoles apparently form from myelin lamellae. Considered as possible sources of their acid phosphatase are Golgi vesicles (primary lysosomes), lysosomes of the dense body type, and the endoplasmic reticulum which lies close to the vacuoles. (b) Membranous bodies that accumulate focally in myelinated fibers in a zone extending 2 to 3 mm distal to the crush. These appear to arise from the endoplasmic reticulum in which demonstrable acid phosphatase activity increases markedly within 2 hours after the nerve is crushed. (c) Autophagic vacuoles in the axoplasm of fibers proximal to the crush. The breakdown of organelles within these vacuoles may have significance for the reorganization of the axoplasm preparatory to regeneration. (d) Phagocytic vacuoles of altered Schwann cells. As myelin degeneration begins, some axoplasm is exposed. This is apparently engulfed by the filopodia of the Schwann cells, and degraded within the phagocytic vacuoles thus formed. (e) Multivesicular bodies in the axoplasm of myelinated fibers. These are generally seen near the nodes of Ranvier.  相似文献   

17.
Biochemical studies of myelin in Wallerian degeneration of rat optic nerve   总被引:3,自引:1,他引:2  
Abstract— Wallerian degeneration of the optic nerves of the rat was induced by removal of the eyes. After 54, 66, 76 or 90 days of degeneration a myelin fraction of the nerves was obtained by the procedure of Laatsch et al. (1962). The yield of myelin from the degenerated nerves was decreased, but the isolated myelin appeared to be morphologically normal. The proportion of cholesterol in the myelin lipids was slightly increased, whereas that of the ethanolamineglycerophosphatides was decreased and galactolipids were normal. After one‘cycle’of myelin purification, the high-molecular-weight fraction formed a much greater percentage of the total protein in myelin isolated from degenerated optic nerves. After 2–3‘cycles’of purification, the distribution of protein in myelin isolated from degenerated and normal optic nerves was similar, an observation suggesting that the high-molecular-weight fraction in‘1-cycle myelin’from degenerated optic nerves may have been partly attributable to contamination. With the possible exception of ethanolamineglycerophosphatides, our data suggest that there was no preferential breakdown of myelin lipid constituents nor of protein constituents during Wallerian degeneration of rat optic nerve. As assessed by SDS-gel electrophoresis of the water-insoluble particulate fraction, the percentage of myelin protein was markedly decreased after 76 days of degeneration. However, the major myelin protein constituents in this fraction (the two basic proteins and proteolipid protein) appeared to decrease in the same relative proportions.  相似文献   

18.
The clearance of debris after injuries to the nervous system is a critical step for restoration of the injured neural network. Microglia are thought to be involved in elimination of degenerating neurons and axons in the central nervous system (CNS), presumably restoring a favorable environment after CNS injuries. However, the mechanism underlying debris clearance remains elusive. Here, we establish an in vitro assay system to estimate phagocytosis of axon debris. We employed a Wallerian degeneration model by cutting axons of the cortical explants. The cortical explants were co-cultured with primary microglia or the MG5 microglial cell line. The cortical neurites were then transected. MG5 cells efficiently phagocytosed the debris, whereas primary microglia showed phagocytic activity only when they were activated by lipopolysaccharide or interferon-β. When MG5 cells or primary microglia were co-cultured with degenerated axons, p38 mitogen-activated protein kinase (MAPK) was activated in these cells. Engulfment of axon debris was blocked by the p38 MAPK inhibitor SB203580, indicating that p38 MAPK is required for phagocytic activity. Receptors that recognize dying cells appeared not to be involved in the process of phagocytosis of the axon debris. In addition, the axons undergoing Wallerian degeneration did not release lactate dehydrogenase, suggesting that degeneration of the severed axons and apoptosis may represent two distinct self-destruction programs. We observed regrowth of the severed neurites after axon debris was removed. This finding suggests that axon debris, in addition to myelin debris, is an inhibitory factor for axon regeneration.Axon degeneration is an active, tightly controlled, and versatile process of axon segment self-destruction. The lesion-induced degeneration process was first described by Waller (1) and has since been known as Wallerian degeneration (2, 3). This degeneration involves rapid blebbing and fragmentation of an entire axonal stretch into short segments, which are then removed by locally activated phagocytic cells. Phagocytic removal of damaged axons and their myelin sheaths distal to the injury is important for creating a favorable environment for axonal regeneration in the nervous system. Although the debris of degenerated axons and myelin is cleared by phagocytes in the peripheral nervous system (PNS), the debris is removed very slowly in the central nervous system (CNS)3 (4, 5). This is considered to be one of the obstacles for regeneration of the injured axons in the CNS.Apoptotic neurons are also engulfed by activated phagocytic cells. Apoptosis is very well documented in the CNS where a significant proportion of neurons undergo programmed cell death (6). To prevent the diffusion of damaging degradation products into surrounding tissues, dying neurons are phagocytosed. In the brain, apoptotic cells are engulfed mainly by the resident population of phagocytes known as microglia. Microglia are generally considered to be immune cells of the CNS (7). They respond to any kind of pathology with a reaction termed “microglial activation.” After injuries to the CNS, microglia react within a few hours with a migratory response toward the lesion site.Although insight into the mechanism of phagocytosis of dying cells by microglia has improved, little is known about the mechanism of clearance of degenerated axons and myelin debris by microglia after axonal injury in the CNS. Interestingly, the axons undergoing Wallerian degeneration do not seem to possess detectable activation of the caspase family (8), suggesting that Wallerian degeneration and apoptosis may represent two distinct self-destruction programs. Thus, the mechanism of microglial phagocytosis of dying cells might be different from that of axon/myelin debris. We aimed to elucidate the mechanism of debris clearance by microglia after an axonal injury. We established an in vitro assay system to estimate phagocytosis of degenerated axon debris. We found that p38 mitogen-activated protein kinase (MAPK) was critical for the phagocytic activity of microglia. Treatment with lipopolysaccharide (LPS) or interferon-β (IFN-β) was necessary for the primary microglia to become phagocytic. In addition, clearance of degenerated axon debris allowed axonal growth from the severed neurites, suggesting that removal of the axon debris provides a favorable environment for axonal regeneration.  相似文献   

19.
Peripheral nerves are complex histological structures that can be affected by a variety of conditions with different degree of axonal degeneration and demyelination. For the study of peripheral nerve regeneration in pathology and tissue engineering, it is necessary to evaluate the regeneration, remyelination and extracellular matrix reorganization of the neural tissue. Currently, different histochemical techniques must be used in parallel, and a correlation among their findings should be further performed. In this work, we describe a new histochemical method for myelin and collagen fibers based on luxol fast blue and picrosirius methods, for the evaluation of the morphology, the myelin sheath and the collagen fiber reorganization using a model of peripheral nerve regeneration. Whole brain, normal sciatic nerve and regenerating peripheral nerve samples were fixed in 10% neutral buffered formalin and paraffin-embedded, for the performance of the hematoxylin-eosin stain, the Luxol fast blue method and the new histochemical method for myelin and collagen. The results of this technique revealed that this new histochemical method allowed us to properly evaluate histological patterns, and simultaneously observe the histochemical reaction for myelin sheath and collagen fibers in normal tissue, and during the regeneration process. In conclusion, this new method combines morphological and histochemical properties that allowed us to determine with high accuracy the degree of remyelination and collagen fibers reorganization. For all these reasons, we hypothesize that this new histochemical method could be useful in pathology and tissue engineering.  相似文献   

20.
Abstract: Biochemical methods were used to study the time course of transport of choline phospholipids (labeled by the injection of [3H]choline into the ventral horn of the lumbar spinal cord) in rat sciatic nerve. Autoradiographic methods were used to localize the transported lipid within motor axons. Transported phospholipid, primarily phosphatidylcholine, present in the nerve at 6 h, continued to accumulate over the following 12 days. No discrete waves of transported lipid were observed (a small wave of radioactive phospholipid moving at the high rate would have been missed); the amounts of radioactive lipid increased uniformly along the entire sciatic nerve. In light-microscope autoradiographs, a class of large-caliber axons, presumably motor axons, retained the labeled lipid. Some lipid, even at 6 h, was seen within the myelin sheaths. Later, the labeling of the myelin relative to axon increased. The continued accumulation of choline phospholipids in the axons probably signifies their prolonged release from cell bodies and their retention in various axonal membranes, including the axolemma. The build-up of these phospholipids in myelin probably represents their transfer from the axons to the myelin sheaths surrounding them. When nerves are crushed and allowed to regenerate for 6 or 12 days, choline phospholipids transported during these times enter the regenerating nerve. In light and electron microscope autoradiographs, transported lipid was seen to be localized primarily in the regenerating axons. However, grains overlay the adjacent Schwann cell cytoplasm, indicating transported lipids were transferred from the regenerating axons to the associated Schwann cells. In addition, some cells not associated with growing axons were labeled, suggesting that phosphatidylcholine and possibly acetylcholine, carried to the regenerating axons by axonal transport, were actively metabolized in the terminal, with released choline label being used by other cells. These results demonstrate that axonal transport supplies mature and growing axons and their glial cells with choline phospholipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号