首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The actin cytoskeleton plays a central role in many cell biological processes. The structure and dynamics of the actin cytoskeleton are regulated by numerous actin-binding proteins that usually contain one of the few known actin-binding motifs. WH2 domain (WASP homology domain-2) is a approximately 35 residue actin monomer-binding motif, that is found in many different regulators of the actin cytoskeleton, including the beta-thymosins, ciboulot, WASP (Wiskott Aldrich syndrome protein), verprolin/WIP (WASP-interacting protein), Srv2/CAP (adenylyl cyclase-associated protein) and several uncharacterized proteins. The most highly conserved residues in the WH2 domain are important in beta-thymosin's interactions with actin monomers, suggesting that all WH2 domains may interact with actin monomers through similar interfaces. Our sequence database searches did not reveal any WH2 domain-containing proteins in plants. However, we found three classes of these proteins: WASP, Srv2/CAP and verprolin/WIP in yeast and animals. This suggests that the WH2 domain is an ancient actin monomer-binding motif that existed before the divergence of fungal and animal lineages.  相似文献   

2.
Participation of actin in cellular processes relies on the dynamics of filament assembly. Filament elongation is fed by monomeric actin in complex with either profilin or a Wiscott-Aldrich syndrome protein (WASP) homology domain 2 (WH2)/beta-thymosin (betaT) domain. WH2/betaT motif repetition (typified by ciboulot) or combination with nonrelated domains (as found in N-WASP) results in proteins that yield their actin to filament elongation. Here, we report the crystal structures of actin bound hybrid proteins, constructed between gelsolin and WH2/betaT domains from ciboulot or N-WASP. We observe the C-terminal half of ciboulot domain 2 bound to actin. In solution, we show that cibolout domains 2 and 3 bind to both G- and F-actin, and that whole ciboulot forms a complex with two actin monomers. In contrast, the analogous portion of N-WASP WH2 domain 2 is detached from actin, indicating that the C-terminal halves of the betaT and WH2 motifs are not functionally analogous.  相似文献   

3.
Formin proteins modulate both nucleation and elongation of actin filaments through processive movement of their dimeric formin homology 2 (FH2) domains with filament barbed ends. Mammals possess at least 15 formin genes. A subset of formins termed "diaphanous formins" are regulated by autoinhibition through interaction between an N-terminal diaphanous inhibitory domain (DID) and a C-terminal diaphanous autoregulatory domain (DAD). Here, we found several striking features for the mouse formin, INF2. First, INF2 interacted directly with actin through a region C-terminal to the FH2. This second interacting region sequesters actin monomers, an activity that is dependent on a WASP homology 2 (WH2) motif. Second, the combination of the FH2 and C-terminal regions of INF2 resulted in its curious ability to accelerate both polymerization and depolymerization of actin filaments. The mechanism of the depolymerization activity, which is novel for formin proteins, involves both the monomer binding ability of the WH2 and a potent severing activity that is dependent on covalent attachment of the FH2 to the C terminus. Phosphate inhibits both the depolymerization and severing activities of INF2, suggesting that phosphate release from actin subunits in the filament is a trigger for depolymerization. Third, INF2 contains an N-terminal DID, and the WH2 motif likely doubles as a DAD in an autoinhibitory interaction.  相似文献   

4.
WASP‐family proteins are known to promote assembly of branched actin networks by stimulating the filament‐nucleating activity of the Arp2/3 complex. Here, we show that WASP‐family proteins also function as polymerases that accelerate elongation of uncapped actin filaments. When clustered on a surface, WASP‐family proteins can drive branched actin networks to grow much faster than they could by direct incorporation of soluble monomers. This polymerase activity arises from the coordinated action of two regulatory sequences: (i) a WASP homology 2 (WH2) domain that binds actin, and (ii) a proline‐rich sequence that binds profilin–actin complexes. In the absence of profilin, WH2 domains are sufficient to accelerate filament elongation, but in the presence of profilin, proline‐rich sequences are required to support polymerase activity by (i) bringing polymerization‐competent actin monomers in proximity to growing filament ends, and (ii) promoting shuttling of actin monomers from profilin–actin complexes onto nearby WH2 domains. Unoccupied WH2 domains transiently associate with free filament ends, preventing their growth and dynamically tethering the branched actin network to the WASP‐family proteins that create it. Collaboration between WH2 and proline‐rich sequences thus strikes a balance between filament growth and tethering. Our work expands the number of critical roles that WASP‐family proteins play in the assembly of branched actin networks to at least three: (i) promoting dendritic nucleation; (ii) linking actin networks to membranes; and (iii) accelerating filament elongation.  相似文献   

5.
Twf (twinfilin) is an evolutionarily conserved regulator of actin dynamics composed of two ADF-H (actin-depolymerizing factor homology) domains. Twf binds actin monomers and heterodimeric capping protein with high affinity. Previous studies have demonstrated that mammals express two Twf isoforms, Twf1 and Twf2, of which at least Twf1 also regulates cytoskeletal dynamics by capping actin filament barbed-ends. In the present study, we show that alternative promoter usage of the mouse Twf2 gene generates two isoforms, which differ from each other only at their very N-terminal region. Of these isoforms, Twf2a is predominantly expressed in non-muscle tissues, whereas expression of Twf2b is restricted to heart and skeletal muscle. Both proteins bind actin monomers and capping protein, as well as efficiently capping actin filament barbed-ends. However, the N-terminal ADF-H domain of Twf2b interacts with ADP-G-actin with a 5-fold higher affinity than with ATP-G-actin, whereas the corresponding domain of Twf2a binds ADP-G-actin and ATP-G-actin with equal affinities. Taken together, these results show that, like Twf1, mouse Twf2 is a filament barbed-end capping protein, and that two tissue-specific and biochemically distinct isoforms are generated from the Twf2 gene through alternative promoter usage.  相似文献   

6.
Twinfilin is a highly conserved actin monomer-binding protein that regulates cytoskeletal dynamics in organisms from yeast to mammals. In addition to the previously characterized mammalian twinfilin-1, a second protein with approximately 65% sequence identity to twinfilin-1 exists in mouse and humans. However, previous studies failed to identify any actin binding activity in this protein (Rohwer, A., Kittstein, W., Marks, F., and Gschwendt, M. (1999) Eur. J. Biochem. 263, 518-525). Here we show that this protein, which we named twinfilin-2, is indeed an actin monomer-binding protein. Similar to twinfilin-1, mouse twinfilin-2 binds ADP-G-actin with a higher affinity (KD = 0.12 microM) than ATP-G-actin (KD = 1.96 microM) and efficiently inhibits actin filament assembly in vitro. Both mouse twinfilins inhibit the nucleotide exchange on actin monomers and directly interact with capping protein. Furthermore, the actin interactions of mouse twinfilin-1 and twinfilin-2 are inhibited by phosphatidylinositol (4,5)-bisphosphate. Although biochemically very similar, our Northern blots and in situ hybridizations show that these two proteins display distinct expression patterns. Twinfilin-1 is the major isoform in embryos and in most adult mouse non-muscle cell-types, whereas twinfilin-2 is the predominant isoform of adult heart and skeletal muscles. Studies with isoform-specific antibodies demonstrated that although the two proteins show similar localizations in unstimulated cells, they are regulated by different mechanisms. The small GTPases Rac1 and Cdc42 induce the redistribution of twinfilin-1 to membrane ruffles and cell-cell contacts, respectively, but do not affect the localization of twinfilin-2. Taken together, these data show that mammals have two twinfilin isoforms, which are differentially expressed and regulated through distinct cellular signaling pathways.  相似文献   

7.
Formin proteins are actin assembly factors that accelerate filament nucleation then remain on the elongating barbed end and modulate filament elongation. The formin homology 2 (FH2) domain is central to these activities, but recent work has suggested that additional sequences enhance FH2 domain function. Here we show that the C-terminal 76 amino acids of the formin FMNL3 have a dramatic effect on the ability of the FH2 domain to accelerate actin assembly. This C-terminal region contains a WASp homology 2 (WH2)-like sequence that binds actin monomers in a manner that is competitive with other WH2 domains and with profilin. In addition, the C terminus binds filament barbed ends. As a monomer, the FMNL3 C terminus inhibits actin polymerization and slows barbed end elongation with moderate affinity. As a dimer, the C terminus accelerates actin polymerization from monomers and displays high affinity inhibition of barbed end elongation. These properties are not common to all formin C termini, as those of mDia1 and INF2 do not behave similarly. Interestingly, mutation of two aliphatic residues, which blocks high affinity actin binding by the WH2-like sequence, has no effect on the ability of the C terminus to enhance FH2-mediated polymerization. However, mutation of three successive basic residues at the C terminus of the WH2-like sequence compromises polymerization enhancement. These results illustrate that the C termini of formins are highly diverse in their interactions with actin.  相似文献   

8.
The WH2 (Wiscott-Aldridge syndrome protein homology domain 2) repeat is an actin interacting motif found in monomer sequestering and filament assembly proteins. We have stabilized the prototypical WH2 family member, thymosin-beta4 (Tbeta4), with respect to actin, by creating a hybrid between gelsolin domain 1 and the C-terminal half of Tbeta4 (G1-Tbeta4). This hybrid protein sequesters actin monomers, severs actin filaments and acts as a leaky barbed end cap. Here, we present the structure of the G1-Tbeta4:actin complex at 2 A resolution. The structure reveals that Tbeta4 sequesters by capping both ends of the actin monomer, and that exchange of actin between Tbeta4 and profilin is mediated by a minor overlap in binding sites. The structure implies that multiple WH2 motif-containing proteins will associate longitudinally with actin filaments. Finally, we discuss the role of the WH2 motif in arp2/3 activation.  相似文献   

9.
Formin 2 (Fmn2), a member of the FMN family of formins, plays an important role in early development. This formin cooperates with profilin and Spire, a WASP homology domain 2 (WH2) repeat protein, to stimulate assembly of a dynamic cytoplasmic actin meshwork that facilitates translocation of the meiotic spindle in asymmetric division of mouse oocytes. The kinase-like non-catalytic domain (KIND) of Spire directly interacts with the C-terminal extension of the formin homology domain 2 (FH2) domain of Fmn2, called FSI. This direct interaction is required for the synergy between the two proteins in actin assembly. We have recently demonstrated how Spire, which caps barbed ends via its WH2 domains, activates Fmn2. Fmn2 by itself associates very poorly to filament barbed ends but is rapidly recruited to Spire-capped barbed ends via the KIND domain, and it subsequently displaces Spire from the barbed end to elicit rapid processive assembly from profilin·actin. Here, we address the mechanism by which Spire and Fmn2 compete at barbed ends and the role of FSI in orchestrating this competition as well as in the processivity of Fmn2. We have combined microcalorimetric, fluorescence, and hydrodynamic binding assays, as well as bulk solution and single filament measurements of actin assembly, to show that removal of FSI converts Fmn2 into a Capping Protein. This activity is mimicked by association of KIND to Fmn2. In addition, FSI binds actin at filament barbed ends as a weak capper and plays a role in displacing the WH2 domains of Spire from actin, thus allowing the association of actin-binding regions of FH2 to the barbed end.  相似文献   

10.
Wiskott-Aldrich syndrome proteins (WASP) are a family of proteins that all catalyze actin filament branching with the Arp2/3 complex in a variety of actin-based motile processes. The constitutively active C-terminal domain, called VCA, harbors one or more WASP homology 2 (WH2) domains that bind G-actin, whereas the CA extension binds the Arp2/3 complex. The VCA·actin·Arp2/3 entity associates with a mother filament to form a branched junction from which a daughter filament is initiated. The number and function of WH2-bound actin(s) in the branching process are not known, and the stoichiometry of the VCA·actin·Arp2/3 complex is debated. We have expressed the tandem WH2 repeats of N-WASP, either alone (V) or associated with the C (VC) and CA (VCA) extensions. We analyzed the structure of actin in complex with V, VC, and VCA using protein crystallography and hydrodynamic and spectrofluorimetric methods. The partial crystal structure of the VC·actin 1:1 complex shows two actins in the asymmetric unit with extensive actin-actin contacts. In solution, each of the two WH2 domains in V, VC, and VCA binds G-actin in 1:2 complexes that participate in barbed end assembly. V, VC, and VCA enhance barbed end depolymerization like profilin but neither nucleate nor sever filaments, in contrast with other WH2 repeats. VCA binds the Arp2/3 complex in a 1:1 complex even in the presence of a large excess of VCA. VCA·Arp2/3 binds one actin in a latrunculin A-sensitive fashion, in a 1:1:1 complex, indicating that binding of the second actin to VCA is weakened in the ternary complex.  相似文献   

11.
Structural basis for the actin-binding function of missing-in-metastasis   总被引:1,自引:0,他引:1  
The adaptor protein missing-in-metastasis (MIM) contains independent F- and G-actin binding domains, consisting, respectively, of an N-terminal 250 aa IRSp53/MIM homology domain (IMD) and a C-terminal WASP-homology domain 2 (WH2). We determined the crystal structures of MIM's IMD and that of its WH2 bound to actin. The IMD forms a dimer, with each subunit folded as an antiparallel three-helix bundle. This fold is related to that of the BAR domain. Like the BAR domain, the IMD has been implicated in membrane binding. Yet, comparison of the structures reveals that the membrane binding surfaces of the two domains have opposite curvatures, which may determine the type of curvature of the interacting membrane. The WH2 of MIM is longer than the prototypical WH2, interacting with all four subdomains of actin. We characterize a similar WH2 at the C terminus of IRSp53 and propose that in these two proteins WH2 performs a scaffolding function.  相似文献   

12.
The Rickettsia ~1800-amino-acid autotransporter protein surface cell antigen 2 (Sca2) promotes actin polymerization on the surface of the bacterium to drive its movement using an actin comet-tail mechanism. Sca2 mimics eukaryotic formins in that it promotes both actin filament nucleation and elongation and competes with capping protein to generate filaments that are long and unbranched. However, despite these functional similarities, Sca2 is structurally unrelated to eukaryotic formins and achieves these functions through an entirely different mechanism. Thus, while formins are dimeric, Sca2 functions as a monomer. However, Sca2 displays intramolecular interactions and functional cooperativity between its N- and C-terminal domains that are crucial for actin nucleation and elongation. Here, we map the interaction of N- and C- terminal fragments of Sca2 and their contribution to actin binding and nucleation. We find that both the N- and C-terminal regions of Sca2 interact with actin monomers but only weakly, whereas the full-length protein binds two actin monomers with high affinity. Moreover, deletions at both ends of the N- and C-terminal regions disrupt their ability to interact with each other, suggesting that they form a contiguous ring-like structure that wraps around two actin subunits, analogous to the formin homology-2 domain. The discovery of Sca2 as an actin nucleator followed the identification of what appeared to be a repeat of three Wiskott-Aldrich syndrome homology 2 (WH2) domains in the middle of the molecule, consistent with the presence of WH2 domains in most actin nucleators. However, we show here that contrary to previous assumptions, Sca2 does not contain WH2 domains. Instead, our analysis indicates that the region containing the putative WH2 domains is folded as a globular domain that cooperates with other parts of the Sca2 molecule for actin binding and nucleation.  相似文献   

13.
The Ena/VASP and WASP family of proteins play distinct roles in actin cytoskeleton remodeling. Ena/VASP is linked to actin filament elongation, whereas WASP plays a role in filament nucleation and branching mediated by Arp2/3 complex. The molecular mechanisms controlling both processes are only emerging. Both Ena/VASP and WASP are multidomain proteins. They both present poly-Pro regions, which mediate the binding of profilin-actin, followed by G-actin-binding (GAB) domains of the WASP-homology 2 (WH2) type. However, the WH2 of Ena/VASP is somewhat different from that of WASP, and has been poorly characterized. Here we demonstrate that this WH2 binds profilin-actin with higher affinity than actin alone. The results are consistent with a model whereby allosteric modulation of affinity drives the transition of profilin-actin from the poly-Pro region to the WH2 and then to the barbed end of the filament during elongation. Therefore, the function of the WH2 in Ena/VASP appears to be to "process" profilin-actin for its incorporation at the barbed end of the growing filament. Conformational changes in the newly incorporated actin subunit, resulting either from nucleotide hydrolysis or from the G- to F-actin transition, may serve as a "sensor" for the processive stepping of Ena/VASP. Conserved domain architecture suggests that WASP may work similarly.  相似文献   

14.
ActA is a bacterially encoded protein that enables Listeria monocytogenes to hijack the host cell actin cytoskeleton. It promotes Arp2/3-dependent actin nucleation, but its interactions with cellular components of the nucleation machinery are not well understood. Here we show that two domains of ActA (residues 85-104 and 121-138) with sequence similarity to WASP homology 2 domains bind two actin monomers with submicromolar affinity. ActA binds Arp2/3 with a K(d) of 0.6 microm and competes for binding with the WASP family proteins N-WASP and Scar1. By chemical cross-linking, ActA, N-WASP, and Scar1 contact the same three subunits of the Arp2/3 complex, p40, Arp2, and Arp3. Interestingly, profilin competes with ActA for binding of Arp2/3, but actophorin (cofilin) does not. The minimal Arp2/3-binding site of ActA (residues 144-170) is C-terminal to both actin-binding sites and shares sequence homology with Arp2/3-binding regions of WASP family proteins. The maximal activity at saturating concentrations of ActA is identical to the most active domains of the WASP family proteins. We propose that ActA and endogenous WASP family proteins promote Arp2/3-dependent nucleation by similar mechanisms and require simultaneous binding of Arp2 and Arp3.  相似文献   

15.
Drosophila melanogaster sarcomere length short (SALS) is a recently identified Wiskott-Aldrich syndrome protein homology 2 (WH2) domain protein involved in skeletal muscle thin filament regulation. SALS was shown to be important for the establishment of the proper length and organization of sarcomeric actin filaments. Here, we present the first detailed characterization of the biochemical activities of the tandem WH2 domains of SALS (SALS-WH2). Our results revealed that SALS-WH2 binds both monomeric and filamentous actin and shifts the monomer-filament equilibrium toward the monomeric actin. In addition, SALS-WH2 can bind to but fails to depolymerize phalloidin- or jasplakinolide-bound actin filaments. These interactions endow SALS-WH2 with the following two major activities in the regulation of actin dynamics: SALS-WH2 sequesters actin monomers into non-polymerizable complexes and enhances actin filament disassembly by severing, which is modulated by tropomyosin. We also show that profilin does not influence the activities of the WH2 domains of SALS in actin dynamics. In conclusion, the tandem WH2 domains of SALS are multifunctional regulators of actin dynamics. Our findings suggest that the activities of the WH2 domains do not reconstitute the presumed biological function of the full-length protein. Consequently, the interactions of the WH2 domains of SALS with actin must be tuned in the cellular context by other modules of the protein and/or sarcomeric components for its proper functioning.  相似文献   

16.
Twinfilin is a ubiquitous actin monomer-binding protein that regulates actin filament turnover in yeast and mammalian cells. To elucidate the mechanism by which twinfilin contributes to actin filament dynamics, we carried out an analysis of yeast twinfilin, and we show here that twinfilin is an abundant protein that localizes to cortical actin patches in wild-type yeast cells. Native gel assays demonstrate that twinfilin binds ADP-actin monomers with higher affinity than ATP-actin monomers. A mutant twinfilin that does not interact with actin monomers in vitro no longer localizes to cortical actin patches when expressed in yeast, suggesting that the ability to interact with actin monomers may be essential for the localization of twinfilin. The localization of twinfilin to the cortical actin cytoskeleton is also disrupted in yeast strains where either the CAP1 or CAP2 gene, encoding for the alpha and beta subunits of capping protein, is deleted. Purified twinfilin and capping protein form a complex on native gels. Twinfilin also interacts with phosphatidylinositol 4,5-bisphosphate (PI[4,5]P2), and its actin monomer-sequestering activity is inhibited by PI(4,5)P2. Based on these results, we propose a model for the biological role of twinfilin as a protein that localizes actin monomers to the sites of rapid filament assembly in cells.  相似文献   

17.
18.
CapG is the only member of the gelsolin family unable to sever actin filaments. Changing amino acids 84-91 (severing domain) and 124-137 (WH2-containing segment) simultaneously to the sequences of gelsolin results in a mutant, CapG-sev, capable of severing actin filaments. The gain of severing function does not alter actin filament capping, but is accompanied by a higher affinity for monomeric actin, and the capacity to bind and sequester two actin monomers. Analysis of CapG-sev crystal structure suggests a more loosely folded inactive conformation than gelsolin, with a shorter S1-S2 latch. Calcium binding to S1 opens this latch and S1 becomes separated from a closely interfaced S2-S3 complex by an extended arm consisting of amino acids 118-137. Modeling with F-actin predicts that the length of this WH2-containing arm is critical for severing function, and the addition of a single amino acid (alanine or histidine) eliminates CapG-sev severing activity, confirming this prediction. We conclude that efficient severing utilizes two actin monomer-binding sites, and that the length of the WH2-containing segment is a critical functional determinant for severing.  相似文献   

19.
WAVE/SCAR protein was identified as a protein which has similarity to WASP and N-WASP, especially in its C terminal. Recently, WAVE/SCAR protein has been shown to cooperate with the Arp2/3 complex, a nucleation core for actin polymerization in vitro. However, in spite of its general function, WAVE/SCAR expression is mainly restricted to the brain, suggesting the existence of related molecule(s). We here identified two human WAVE/SCAR homologues, which cover other organs. We named the original WAVE1 and newly identified ones WAVE2 and WAVE3. WAVE2 had a very wide distribution with strong expression in peripheral blood leukocytes and mapped on chromosome Xp11.21, next to the WASP locus. WAVE3 and WAVE1 had similar distributions. WAVE3 was strongly expressed in brain and mapped on chromosome 13q12. WAVE1 was mapped on chromosome 6q21-22. Ectopically expressed WAVE2 and WAVE3 induced actin filament clusters in a similar manner with WAVE1. These actin cluster formations were suppressed by deletion of their C-terminal VPH (verproline homology)/WH2 (WASP homology 2) domain. Further, WAVE2 and WAVE3 associate with the Arp2/3 complex as does WAVE1. Our identification of WAVE homologues suggests that WAVE family proteins have general function for regulating the actin cytoskeleton in many tissues.  相似文献   

20.
INF2 is an unusual formin protein in that it accelerates both actin polymerization and depolymerization, the latter through an actin filament-severing activity. Similar to other formins, INF2 possesses a dimeric formin homology 2 (FH2) domain that binds filament barbed ends and is critical for polymerization and depolymerization activities. In addition, INF2 binds actin monomers through its diaphanous autoregulatory domain (DAD) that resembles a Wiskott-Aldrich syndrome protein homology 2 (WH2) sequence C-terminal to the FH2 that participates in both polymerization and depolymerization. INF2-DAD is also predicted to participate in an autoinhibitory interaction with the N-terminal diaphanous inhibitory domain (DID). In this work, we show that actin monomer binding to the DAD of INF2 competes with the DID/DAD interaction, thereby activating actin polymerization. INF2 is autoinhibited in cells because mutation of a key DID residue results in constitutive INF2 activity. In contrast, purified full-length INF2 is constitutively active in biochemical actin polymerization assays containing only INF2 and actin monomers. Addition of proteins that compete with INF2-DAD for actin binding (profilin or the WH2 from Wiskott-Aldrich syndrome protein) decrease full-length INF2 activity while not significantly decreasing activity of an INF2 construct lacking the DID sequence. Profilin-mediated INF2 inhibition is relieved by an anti-N-terminal antibody for INF2 that blocks the DID/DAD interaction. These results suggest that free actin monomers can serve as INF2 activators by competing with the DID/DAD interaction. We also find that, in contrast to past results, the DID-containing N terminus of INF2 does not directly bind the Rho GTPase Cdc42.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号