首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detection and clearance of invading pathogens requires a coordinated response of the adaptive and innate immune system. Host cell, however, also features different mechanisms that restrict pathogen replication in a cell‐intrinsic manner, collectively referred to as cell‐autonomous immunity. In immune cells, the ability to unleash those mechanisms strongly depends on the activation state of the cell, which is controlled by cytokines or the detection of pathogen‐associated molecular patterns by pattern‐recognition receptors. The interferon (IFN) class of cytokines is one of the strongest inducers of antimicrobial effector mechanisms and acts against viral, bacterial and parasitic intracellular pathogens. This has been linked to the upregulation of several hundreds of IFN‐stimulated genes, among them the so‐called IFN‐inducible GTPases. Two subfamilies of IFN‐inducible GTPases, the immunity‐related GTPases (IRGs) and the guanylate‐binding proteins (GBPs), have gained attention due to their exceptional ability to specifically target intracellular vacuolar pathogens and restrict their replication by destroying their vacuolar compartment. Their repertoire has recently been expanded to the regulation of inflammasome complexes, which are cytosolic multi‐protein complexes that control an inflammatory cell death called pyroptosis and the release of cytokines like interleukin‐1β and interleukin‐18. Here we discuss recent advances in understanding the function, the targeting and regulation of IRG and GBP proteins during microbial infections.  相似文献   

2.
3.
We investigated the in vitro antibiotic activity of the 19-amino acid antimicrobial peptide HP (2-20), derived from the N-terminus of Helicobacter pylori Ribosomal Protein L1 (RPL1), against antibiotic susceptible and resistant pathogens from a patient with gallstones. HP (2-20) was active against antibiotic-susceptible and antibiotic-resistant clinical isolates of pathogens from a patient with gallstones, but this peptide showed no hemolytic activity against normal human erythrocytes. HP (2-20) acted synergistically with ciprofloxacin against pathogenic bacteria. Fluorescence activated flow cytometry revealed that the effect of HP (2-20) was dependent on energy and salt concentration. In addition, scanning electron microscopy showed that HP (2-20) caused significant morphological alterations to the cell surface of pathogens. Using 16S rDNA sequences, we found that isolates from bile were 100% homologous to Pseudomonas aeruginosa. These findings suggest that HP (2-20) may be useful clinically as an antibiotic against acquired pathogens from patients with gallstones and against pathogens resistant to other antibiotics.  相似文献   

4.
Interferon (IFN) responses are critical for controlling herpes simplex virus 1 (HSV-1). The importance of neuronal IFN signaling in controlling acute and latent HSV-1 infection remains unclear. Compartmentalized neuron cultures revealed that mature sensory neurons respond to IFNβ at both the axon and cell body through distinct mechanisms, resulting in control of HSV-1. Mice specifically lacking neural IFN signaling succumbed rapidly to HSV-1 corneal infection, demonstrating that IFN responses of the immune system and non-neuronal tissues are insufficient to confer survival following virus challenge. Furthermore, neurovirulence was restored to an HSV strain lacking the IFN-modulating gene, γ34.5, despite its expected attenuation in peripheral tissues. These studies define a crucial role for neuronal IFN signaling for protection against HSV-1 pathogenesis and replication, and they provide a novel framework to enhance our understanding of the interface between host innate immunity and neurotropic pathogens.  相似文献   

5.
Patel MV  Ghosh M  Fahey JV  Wira CR 《PloS one》2012,7(4):e35654
Interferon β (IFNβ) is an antiviral cytokine secreted in response to pathogenic exposure that creates a restrictive intracellular environment through the action of downstream interferon-stimulated genes (ISG). The objective of this study was to examine the expression of IFNβ and ISG in both human uterine epithelial cells (UEC) and the ECC-1 uterine epithelial cell line and determine if expression changes with TLR stimulation and hormone exposure. Stimulation of primary uterine epithelial cells and ECC-1 cells with the TLR3 agonist poly (I:C) induced the mRNA expression of IFNβ, MxA, OAS2 and PKR. Other TLR agonists including imiquimod and CpG had no effect on either IFNβ or ISG expression. In contrast to ECC-1 cell responses which were slower, maximal IFNβ upregulation in UEC occurred 3 hours post-stimulation and preceded the ISG response which peaked approximately 12 hours after poly (I:C) exposure. Unexpectedly, estradiol, either alone or prior to treatment with poly (I:C), had no effect on IFNβ or ISG expression. Blockade of the IFN receptor abrogated the upregulation of MxA, OAS2 and PKR. Furthermore, neutralizing antibodies against IFNβ partially inhibited the upregulation of all three ISG. Estradiol, directly and in the presence of poly (I:C) had no effect on IFNβ and ISG expression. These results indicate that uterine epithelial cells are important sentinels of the innate immune system and demonstrate that uterine epithelial cells are capable of mounting a rapid IFN-mediated antiviral response that is independent of estradiol and is therefore potentially sustained throughout the menstrual cycle to aid in the defense of the uterus against potential pathogens.  相似文献   

6.
7.
Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus. Toll-like receptor 7 (TLR7) is involved in host innate immunity against pathogens, and its aberrant activation is linked to the development of systemic lupus erythematosus (SLE, also called "lupus"). Type I interferons (IFN) are apparently driving forces for lupus pathogenesis. Previously, we found that EBV latent membrane protein 1 (LMP1) primes cells for IFN production. In this report, the relationship among EBV LMP1, TLRs, and IFN production are examined. We find that TLR7 activation increases the expression of EBV LMP1, and IFN regulatory factor 7 (IRF7) is involved in the stimulation process. TLR7 activation did not induce IFNs from EBV-infected cells, but potentiates those cells for IFN production by TLR3 or TLR9 activation. In addition, we find that LMP1 and IFNs are co-expressed in the same cells in some lupus patients. Therefore, the aberrant activation of TLR7 might induce LMP1 expression and LMP1-expression cells may be producing IFNs in lupus patients. These results suggest EBV might be an exacerbating factor in some lupus patients via promoting IFN production.  相似文献   

8.
9.
The innate immune response represents a primary line of defense against invading viral pathogens. Since epithelial cells are the primary site of gammaherpesvirus replication during infection in vivo and there are no information on activity of IFN-III signaling against gammaherpesviruses in this cell type, in present study, we evaluated the expression profile and virus-host interactions in mouse mammary epithelial cell (NMuMG) infected with three strains of murine gammaherpesvirus, MHV-68, MHV-72 and MHV-4556. Studying three strains of murine gammaherpesvirus, which differ in nucleotide sequence of some structural and non-structural genes, allowed us to compare the strain-dependent interactions with host organism. Our results clearly demonstrate that: (i) MHV-68, MHV-72 and MHV-4556 differentially interact with intracellular signaling and dysregulate IFN signal transduction; (ii) MHV-68, MHV-72 and MHV-4556 degrade type I IFN receptor in very early stages of infection (2–4 hpi), but not type III IFN receptor; (iii) type III IFN signaling might play a key role in antiviral defense of epithelial cells in early stages of murine gammaherpesvirus replication; (iv) NMuMG cells are an appropriate model for study of not only type I IFN signaling, but also type III IFN signaling pathway. These findings are important for better understanding of individual virus-host interactions in lytic as well as in persistent gammaherpesvirus replication and help us to elucidate IFN-III function in early events of virus infection.  相似文献   

10.
Interferons (IFNs) encode a family of secreted proteins that provide the front-line defense against viral infections. Their diverse biological actions are thought to be mediated by the products of specific but usually overlapping sets of cellular genes induced in the target cells. We have recently isolated a new human IFN-induced gene that we have termed ISG20, which codes for a 3' to 5' exonuclease with specificity for single-stranded RNA and, to a lesser extent, for DNA. In this report, we demonstrate that ISG20 is involved in the antiviral functions of IFN. In the absence of IFN treatment, ISG20-overexpressing HeLa cells showed resistance to infections by vesicular stomatitis virus (VSV), influenza virus, and encephalomyocarditis virus (three RNA genomic viruses) but not to the DNA genomic adenovirus. ISG20 specifically interfered with VSV mRNA synthesis and protein production while leaving the expression of cellular control genes unaffected. No antiviral effect was observed in cells overexpressing a mutated ISG20 protein defective in exonuclease activity, demonstrating that the antiviral effects were due to the exonuclease activity of ISG20. In addition, the inactive mutant ISG20 protein, which is able to inhibit ISG20 exonuclease activity in vitro, significantly reduced the ability of IFN to block VSV development. Taken together, these data suggested that the antiviral activity of IFN against VSV is partly mediated by ISG20. We thus show that, besides RNase L, ISG20 has an antiviral activity, supporting the idea that it might represent a novel antiviral pathway in the mechanism of IFN action.  相似文献   

11.
12.
HP (2-20) is a peptide derived from the N-terminus of Helicobacter pylori ribosomal protein L1 that has been shown to have antimicrobial activity against various species of bacteria. When we tested the effects of HP (2-20), we found that this peptide displayed strong activity against pathogens from a patient with gallstones, but it did not have hemolytic activity against human erythrocytes. We also found that HP (2-20) had potent activity against cefazolin sodium-resistant bacterial cell lines, and that HP (2-20) and cefazolin sodium had synergistic effects against cell lines resistant to the latter. To investigate the mechanism of action of HP (2-20), we performed fluorescence activated flow cytometry using pathogens from the patient with gallstones. As determined by propidium iodide (PI) staining, pathogenic bacteria treated with HP (2-20) showed higher fluorescence intensity than untreated cells, similar to melittin-treated cells, and that HP (2-20) acted in an energy- and salt-dependent manner. Scanning electron microscopy showed that HP (2-20) caused significant morphological alterations in the cell surface of pathogens from the patient with gallstones. By determining their 16S rDNA sequences, we found that both the pathogens from the patient with gallstones and the cefazolin sodium-resistant cell lines showed 100% homology with sequences from Pseudomonas aeruginosa. Taken together, these results suggest that HP (2-20) has antibiotic activity and that it may be used as a lead drug for the treatment of acquired pathogens from patients with gallstones and antibiotic-resistant cell lines.  相似文献   

13.
The fungicidal capacity of murine pulmonary macrophages (PuM) activated in vitro with IFN or lymphokines or in vivo with IFN was studied. PuM treated overnight with IFN (1000 U/ml), Con A-stimulated spleen cell culture supernatants, or lymph node cells plus Con A significantly killed yeast cells of the Gar w isolate of Paracoccidioides brasiliensis 45.5 +/- 2.1%, 72.0 +/- 4.2%, and 51.5 +/- 0.7% respectively. Two other isolates of P. brasiliensis (Ru and LA) were also killed (45 and 34%) by PuM activated by lymph node cells plus Con A. Control PuM had lesser but significant capacity for killing of P. brasiliensis isolates, ranging from 15 to 22%. Killing of P. brasiliensis by PuM activated by Con A-stimulated spleen cell culture supernatants could not be significantly inhibited by superoxide dismutase, catalase, or azide. When mice were treated in vivo with 4 X 10(5) IFN U i.p. and PuM isolated 24 h later, the PuM had significantly enhanced ability to kill P. brasiliensis (47.0 +/- 6.3%) compared with PuM from control mice (25.0 +/- 4.2%). PuM thus activated also showed enhanced killing (43%) of a second isolate compared with control PuM (22%). PuM from IFN-treated mice were able to significantly kill Blastomyces dermatitidis (37.5 +/- 0.7%) compared with control PuM (4.5 +/- 6.3%). These results show that PuM can be activated in vitro and in vivo by IFN for enhanced fungicidal activity against two pulmonary fungal pathogens and suggests that immunologic production of IFN could be an important factor in host defenses against these diseases.  相似文献   

14.
The type I interferon (IFN) system plays an important role in antiviral defense against influenza A viruses (FLUAV), which are natural chicken pathogens. Studies of mice identified the Mx1 protein as a key effector molecule of the IFN-induced antiviral state against FLUAV. Chicken Mx genes are highly polymorphic, and recent studies suggested that an Asn/Ser polymorphism at amino acid position 631 determines the antiviral activity of the chicken Mx protein. By employing chicken embryo fibroblasts with defined Mx-631 polymorphisms and retroviral vectors for the expression of Mx isoforms in chicken cells and embryonated eggs, we show here that neither the 631Asn nor the 631Ser variant of chicken Mx was able to confer antiviral protection against several lowly and highly pathogenic FLUAV strains. Using a short interfering RNA (siRNA)-mediated knockdown approach, we noted that the antiviral effect of type I IFN in chicken cells was not dependent on Mx, suggesting that some other IFN-induced factors must contribute to the inhibition of FLUAV in chicken cells. Finally, we found that both isoforms of chicken Mx protein appear to lack GTPase activity, which might explain the observed lack of antiviral activity.  相似文献   

15.
Interferons (IFN) are potent immune stimulators that play key roles in both innate and adaptive immune responses. They are considered the first line of defense against viral pathogens and can even be used as treatments to boost the immune system. While viruses are usually seen as a threat to the host, an emerging class of cancer therapeutics exploits the natural capacity of some viruses to directly infect and kill cancer cells. The cancer-specificity of these bio-therapeutics, called oncolytic viruses (OVs), often relies on defective IFN responses that are frequently observed in cancer cells, therefore increasing their vulnerability to viruses compared to healthy cells. To ensure the safety of the therapy, many OVs have been engineered to further activate the IFN response. As a consequence of this IFN over-stimulation, the virus is cleared faster by the immune system, which limits direct oncolysis. Importantly, the therapeutic activity of OVs also relies on their capacity to trigger anti-tumor immunity and IFNs are key players in this aspect. Here, we review the complex cancer–virus–anti-tumor immunity interplay and discuss the diverse functions of IFNs for each of these processes.  相似文献   

16.
17.
Defence mechanisms against intracellular bacterial pathogens are incompletely understood. Our study characterizes a type I IFN-dependent cell-autonomous defence pathway directed against Legionella pneumophila, an intracellular model organism and frequent cause of pneumonia. We show that macrophages infected with L. pneumophila produced IFNβ in a STING- and IRF3- dependent manner. Paracrine type I IFNs stimulated upregulation of IFN-stimulated genes and a cell-autonomous defence pathway acting on replicating and non-replicating Legionella within their specialized vacuole. Our infection experiments in mice lacking receptors for type I and/or II IFNs show that type I IFNs contribute to expression of IFN-stimulated genes and to bacterial clearance as well as resistance in L. pneumophila pneumonia in addition to type II IFN. Overall, our study shows that paracrine type I IFNs mediate defence against L. pneumophila, and demonstrates a protective role of type I IFNs in in vivo infections with intracellular bacteria.  相似文献   

18.
ISG15 is an IFN-inducible ubiquitin-like protein and its expression and conjugation to target proteins are dramatically induced upon viral or bacterial infection. We have generated a UBP43 knockout mouse model that is lacking an ISG15-specific isopeptidase to study the biological role of the protein ISGylation system. We report that UBP43-deficient mice are hypersensitive to LPS-induced lethality and that TIR domain-containing adapter inducing IFN-beta --> IFN regulatory factor 3 --> type I IFN is the major axis to induce protein ISGylation and UBP43 expression in macrophages upon LPS treatment. In ubp43(-/-) macrophages, upon LPS treatment we detected increased expression of IFN-stimulated genes, including genes for several cytokines and chemokines involved in the innate immune response. The ubp43(-/-) mice were able to restrict the growth of Salmonella typhimurium more efficiently than wild-type mice. These results clearly demonstrate two aspects of IFN-signaling, a beneficial effect against pathogens but a detriment to the body without strict control.  相似文献   

19.
ISG20 is an ribonuclease specific for single-stranded RNA and considered to play a role in innate immunity against virus infections. We herein show that both poly IC, an authentic double-stranded RNA, and IFN-gamma induced ISG20 expression in cultured HUVEC. Poly IC-induced ISG20 expression was inhibited by LY294002, an inhibitor of PI3K, or by RNA interference against IFN regulatory factor three. ISG20 expression was not induced by IFN-beta, loxoribine or CpG oligonucleotide. These results suggest that ISG20 induction by poly IC may not be dependent on the IRF-3-mediated type I IFN induction pathway in HUVEC. ISG20 may be involved in innate immunity against viral infection in vascular endothelial cells.  相似文献   

20.
The innate immune system protects cells against invading viral pathogens by the auto- and paracrine action of type I interferon (IFN). In addition, the interferon regulatory factor (IRF)-1 can induce alternative intrinsic antiviral responses. Although both, type I IFN and IRF-1 mediate their antiviral action by inducing overlapping subsets of IFN stimulated genes, the functional role of this alternative antiviral action of IRF-1 in context of viral infections in vivo remains unknown. Here, we report that IRF-1 is essential to counteract the neuropathology of vesicular stomatitis virus (VSV). IFN- and IRF-1-dependent antiviral responses act sequentially to create a layered antiviral protection program against VSV infections. Upon intranasal infection, VSV is cleared in the presence or absence of IRF-1 in peripheral organs, but IRF-1−/− mice continue to propagate the virus in the brain and succumb. Although rapid IFN induction leads to a decline in VSV titers early on, viral replication is re-enforced in the brains of IRF-1−/− mice. While IFN provides short-term protection, IRF-1 is induced with delayed kinetics and controls viral replication at later stages of infection. IRF-1 has no influence on viral entry but inhibits viral replication in neurons and viral spread through the CNS, which leads to fatal inflammatory responses in the CNS. These data support a temporal, non-redundant antiviral function of type I IFN and IRF-1, the latter playing a crucial role in late time points of VSV infection in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号