首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microtubule "plus-end-tracking proteins": The end is just the beginning   总被引:22,自引:0,他引:22  
Schuyler SC  Pellman D 《Cell》2001,105(4):421-424
  相似文献   

2.
Shaw RM  Fay AJ  Puthenveedu MA  von Zastrow M  Jan YN  Jan LY 《Cell》2007,128(3):547-560
Gap junctions are intercellular channels that connect the cytoplasms of adjacent cells. For gap junctions to properly control organ formation and electrical synchronization in the heart and the brain, connexin-based hemichannels must be correctly targeted to cell-cell borders. While it is generally accepted that gap junctions form via lateral diffusion of hemichannels following microtubule-mediated delivery to the plasma membrane, we provide evidence for direct targeting of hemichannels to cell-cell junctions through a pathway that is dependent on microtubules; through the adherens-junction proteins N-cadherin and beta-catenin; through the microtubule plus-end-tracking protein (+TIP) EB1; and through its interacting protein p150(Glued). Based on live cell microscopy that includes fluorescence recovery after photobleaching (FRAP), total internal reflection fluorescence (TIRF), deconvolution, and siRNA knockdown, we propose that preferential tethering of microtubule plus ends at the adherens junction promotes delivery of connexin hemichannels directly to the cell-cell border. These findings support an unanticipated mechanism for protein delivery to points of cell-cell contact.  相似文献   

3.
4.
J Avila 《Life sciences》1992,50(5):327-334
Microtubules, with intermediate filaments and microfilaments, are the components of the cell skeleton which determinates the shape of a cell. Microtubules are involved in different functions including the assembly of mitotic spindle, in dividing cells, or axon extension, in neurons. In the first case, microtubules are highly dynamic, while in the second case microtubules are quite stable, suggesting that microtubule with different physical properties (stability) are involved in different functions. Thus, to understand the mechanisms of microtubule functions it is very important to understand microtubule dynamics. Historically, tubulin, the main component of microtubules, was first characterized as the major component of the mitotic spindle that binds to colchicine. Afterwards, it was found that tubulin is particularly more abundant in brain than in other tissues. Therefore, the roles of microtubules in mitosis, and in neurons, have been more extensively analyzed and, in this review, these roles will be discussed.  相似文献   

5.
Microtubule dynamics and tubulin interacting proteins   总被引:11,自引:0,他引:11  
Microtubule dynamics are crucial in generation of the mitotic spindle. During the transition from interphase to mitosis, there is an increase in the frequency of microtubule catastrophes. Recent work has identified two proteins, Op 18/stathmin and XKCM1, which can promote microtubule catastrophes in vitro and in cells or extracts. Although both of these proteins share the ability to bind tubulin dimers, their mechanisms of action in destabilizing microtubules are distinct.  相似文献   

6.
7.
8.
The microtubule associated proteins of goat brain were separated from tubulin on the basis of their thermostability and then fractionated by chromatography on Sepharose 4B column. Analysis of the fractions by SDS-Polyacrylamide gel electrophoresis and assay of their tubulin-assembly-promoting activity indicate that this activity resides primarily in the tauproteins (mol. wt. 55,000–70,000) and a class of even lower molecular weight (25,000–35,000) proteins. Electrophoresis of the microtubule associated protein fractions separated from tubulin by phosphocellulose chromatography are in agreement with the results obtained from fractionation on Sepharose 4B columns.  相似文献   

9.
To understand microtubule function the factors regulating their spatial organization and their interaction with cellular organelles, including other microtubules, must be elucidated. Many proteins are implicated in these organizational events and the known consequences of their actions within the cell are increasing. For example, the function of microtubule bundles at the surfaces of polarized cells has recently received attention, as has the action in cortical rotation of a transient arrangement of microtubules found beneath the vegetal surface of fertilized frog eggs. The in vivo association of microtubules during early Xenopus oogenesis has added interest as microtubules bundled in cell-free extracts are protected against the action of a severing protein found in this animal. A 52 kDa F-actin bundling protein purified from Physarum polycephalum organizes microtubules and causes the cobundling of microtubules and microfilaments. These observations, in concert with others that are presented, emphasize the diversity within the family of microtubule cross-linking proteins. The challenge is to determine which proteins are relevant from a physiological perspective, to ascertain their molecular mechanisms of action and to describe how they affect cytoplasmic organization and cell function. To realize this objective, the proteins which cross-link and bundle microtubules must be investigated by techniques which reveal different but related aspects of their properties. Cloning and sequencing of genes for cross-linking proteins, their subcellular localization especially as microtubule-related changes in cell morphology are occurring and the application of genetic studies are necessary. Study of the neural MAP provides the best example of just how powerful current experimental approaches are and at the same time shows their limits. The neural MAP have long been noted for their enhancement of tubulin assembly and microtubule stability. Their spatial distribution has been studied during the morphogenesis of neural cells. Sequencing of cloned genes has revealed the functional domains of neural MAP including carboxy-terminal microtubule-binding sites. Similarities to microtubule binding proteins from other cell types stimulate interest in the neural MAP and further suggest their importance in microtubule organization. For example, MAP4 enjoys a wide cellular distribution and has microtubule-binding sequences very similar to those in the neural MAP. Moreover, the nontubulin proteins of marginal bands are immunologically related to neural MAP, indicating shared structural/functional domains. Even with these findings the mechanism by which neural MAP cross-link microtubules remains uncertain. Indeed, some researchers express doubt that microtubule cross-linking is actually a function of neural MAP in vivo.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The nucleus is the largest organelle in the cell and its position is dynamically controlled in space and time, although the functional significance of this dynamic regulation is not always clear. Nuclear movements are mediated by the cytoskeleton which transmits pushing or pulling forces onto the nuclear envelope. Recent studies have shed light on the mechanisms regulating nuclear positioning inside the cell. While microtubules have been known for a long time to be key players in nuclear positioning, the actin and cytoplasmic intermediate filament cytoskeletons have been implicated in this function more recently and various molecular links between the nuclear envelope and cytoplasmic elements have been identified. In this review, we summarize the recent advances in our understanding of the molecular mechanisms involved in the regulation of nuclear localization in various animal cells and give an overview of the evidence suggesting a crucial role of nuclear positioning in cell polarity and physiology and the consequences of nuclear mispositioning in human pathologies.  相似文献   

11.
Video microscopic observation of a population of microtubules at steady state of assembly shows individual microtubules which interconvert between phases of growing and shrinking. The average duration of either phase is strongly affected by the tubulin concentration. Close to the steady-state (or 'critical') concentration, the mean excursion lengths may be of cellular dimensions, suggesting that dynamic instability can function as a control mechanism for the spatial organization of microtubule arrays. Numerical modelling, based on a limited number of assumptions, illustrates the transition behaviour, and the polar nature of this instability. The basic concept is that tubulin-GTP adds to a terminal position of the microtubule lattice and causes hydrolysis of the tubulin-GTP at a previously terminal lattice position [1, 2]. The predictions of this model can be evaluated experimentally. Further, examination of the consequences of introducing into the lattice a molecule such as a tubulin-drug complex, with altered capacity for helical propagation, provides a quantitative model for substoichiometric inhibition of microtubule dynamics and growth. This principle could have a more general relevance to mechanisms of regulation of microtubules within the cytoskeleton.  相似文献   

12.
Tubulin from eggs and embryos of the Mexican axolotl was characterized by electrophoresis and colchicine binding. In urea-polyacrylamide gel electrophoresis, soluble axolotl egg tubulin migrated as two bands, identical to tubulins from sea urchin sperm and Drosophila eggs. However, in SDS-containing gels, on which the α and β subunits of standard tubulins were well resolved, axolotl egg tubulin migrated as a single band with an apparent molecular weight of 53,500. The method of disruption of the eggs affected both yield of tubulin from vinblastine sulfate precipitates and stability of the colchicine binding activity. The colchicine binding activity of soluble tubulin from gently disrupted eggs was specific and of high affinity, with properties similar to those reported for other tubulins. The tubulin pool in unfertilized eggs was determined to be approximately 2 μg/egg; the level decreased 20% after initiation of cleavage and then remained constant through development to postneurula stages. The colchicine binding activity of soluble tubulin from embryos was much less stable than that of unfertilized eggs and decreased further during development. No differences were found in properties of tubulin from eggs of several strains of normally pigmented axolotls; however, tubulin from albino eggs showed slightly different properties in both electrophoresis and colchicine binding. The colchicine binding activity of soluble tubulin accounts for only half the total activity in axolotl eggs; they possess, in addition, a particulate nontubulin colchicine binding activity.  相似文献   

13.
Microtubule dynamics in vivo: a test of mechanisms of turnover   总被引:35,自引:27,他引:8       下载免费PDF全文
Clarification of the mechanism of microtubule dynamics requires an analysis of the microtubule pattern at two time points in the same cell with single fiber resolution. Single microtubule resolution was obtained by microinjection of haptenized tubulin (fluorescein-tubulin) and subsequent indirect immunofluorescence with an antifluorescein antibody. The two time points in a single cell were, first, the time of photobleaching fluorescein-tubulin, and second, the time of fixation. The pattern of fluorescence replacement in the bleached zone during this time interval revealed the relevant mechanisms. In fibroblasts, microtubule domains in the bleached zone are replaced microtubule by microtubule and not by mechanisms that affect all microtubules simultaneously. Of the models we consider, treadmilling and subunit exchange along the length do not account for this observation, but dynamic instability can since it suggests that growing and shrinking microtubules coexist. In addition, we show that the half-time for microtubule replacement is shortest at the leading edge. Dynamic instability accounts for this observation if in general microtubules do not catastrophically disassemble from the plus end, but instead have a significant probability of undergoing a transition to the growing phase before they depolymerize completely. This type of instability we call tempered rather than catastrophic because, through limited disassembly followed by regrowth, it will preferentially replace polymer domains at the ends of microtubules, thus accounting for the observation that the half-time of microtubule domain replacement is shorter with proximity to the leading edge.  相似文献   

14.
微管是细胞骨架的主要成份,参与细胞内物质的运输与细胞形态的维持,还与有丝分裂和减数分裂等生命活动密切相关。大多数微管都表现出动力学的不稳定性,处于动态的聚合和解聚及之间的随机转换状态。Kinesin-13、Stathmin和Katanin是三类能够解聚微管的蛋白质,在纺锤体组装、染色体分离和神经元发育过程中起重要作用。本文主要对这三类微管解聚相关蛋白质的结构、功能、解聚机制进行了简要介绍,并对它们的解聚机制进行了比较。  相似文献   

15.
Proteolysis in plants: mechanisms and functions   总被引:32,自引:0,他引:32  
  相似文献   

16.
Mitochondrial calcium transport: mechanisms and functions   总被引:18,自引:0,他引:18  
Ca(2+)transport across the mitochondrial inner membrane is facilitated by transporters having four distinct sets of characteristics as well as through the Ca(2+)-induced mitochondrial permeability transition pore (PTP). There are two modes of inward transport, referred to as the Ca(2+)uniporter and the rapid mode or RaM. There are also two distinct mechanisms mediating outward transport, which are not associated with the PTP, referred to as the Na(+)-dependent and the Na(+)-independent Ca(2+)efflux mechanisms. Several important functions have been proposed for these mechanisms, including control of the metabolic rate for cellular energy (ATP) production, modulation of the amplitude and shape of cytosolic Ca(2+)transients, and induction of apoptosis through release of cytochrome c from the mitochondrial inter membrane space into the cytosolic space.The goals of this review are to survey the literature describing the characteristics of the mechanisms of mitochondrial Ca(2+)transport and their proposed physiological functions, emphasizing the more recent contributions, and to consider how the observed characteristics of the mitochondrial Ca(2+)transport mechanisms affect our understanding of their functions.  相似文献   

17.
18.
Differentiated mammalian cells are often characterized by highly specialized and polarized structure. Its formation and maintenance depends on cytoskeletal components, among which microtubules play an important role. The shape and dynamic properties of microtubule networks are controlled by multiple microtubule-associated factors. These include molecular motors and non-motor proteins, some of which accumulate specifically at the growing microtubule plus-ends (the so-called microtubule plus-end tracking proteins). Plus-end tracking proteins can contribute to the regulation of microtubule dynamics, mediate the cross-talk between microtubule ends, the actin cytoskeleton and the cell cortex, and participate in transport and positioning of structural and regulatory factors and membrane organelles. Malfunction of these proteins results in various human diseases including some forms of cancer, neurodevelopmental disorders and mental retardation. In this article we discuss recent data on microtubule dynamics and activities of microtubule plus-end binding proteins important for the physiology and pathology of differentiated mammalian cells such as neurons, polarized epithelia, muscle and sperm cells.  相似文献   

19.
20.
Surfactant-associated proteins: functions and structural variation   总被引:7,自引:0,他引:7  
Pulmonary surfactant is a barrier material of the lungs and has a dual role: firstly, as a true surfactant, lowering the surface tension; and secondly, participating in innate immune defence of the lung and possibly other mucosal surfaces. Surfactant is composed of approximately 90% lipids and 10% proteins. There are four surfactant-specific proteins, designated surfactant protein A (SP-A), SP-B, SP-C and SP-D. Although the sequences and post-translational modifications of SP-B and SP-C are quite conserved between mammalian species, variations exist. The hydrophilic surfactant proteins SP-A and SP-D are members of a family of collagenous carbohydrate binding proteins, known as collectins, consisting of oligomers of trimeric subunits. In view of the different roles of surfactant proteins, studies determining the structure-function relationships of surfactant proteins across the animal kingdom will be very interesting. Such studies may reveal structural elements of the proteins required for surface film dynamics as well as those required for innate immune defence. Since SP-A and SP-D are also present in extrapulmonary tissues, the hydrophobic surfactant proteins SP-B and SP-C may be the most appropriate indicators for the evolutionary origin of surfactant. SP-B is essential for air-breathing in mammals and is therefore largely conserved. Yet, because of its unique structure and its localization in the lung but not in extrapulmonary tissues, SP-C may be the most important indicator for the evolutionary origin of surfactant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号