首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
H-protein, a component of the glycine cleavage system with lipoic acid as a prosthetic group, was expressed in Escherichia coli using a T7 RNA polymerase plasmid expression system. After induction with 25 microM isopropyl-beta-D-thiogalactopyranoside, bacteria harboring the recombinant plasmid expressed mature bovine H-protein as a soluble form at a level of about 10% of the total bacterial protein. Little of the H-protein was lipoylated in E. coli cultured without added lipoate, but when the cells were cultured in medium supplemented with 30 microM lipoate, about 10% of the recombinant protein expressed was the correctly lipoylated active form, 10% was an inactive aberrantly modified form, presumably with an octanoyl group, and the remaining 80% was the unlipoylated apoform. Each of the three forms was purified to homogeneity and shown to have the same NH2-terminal amino acid sequence as that of native bovine H-protein. The specific activity of the lipoylated form of H-protein expressed was consistent with that of H-protein purified from bovine liver. The purified recombinant apo-H-protein was lipoylated and consequently activated in vitro with lipoyl-AMP as a lipoyl donor by lipoyltransferase purified 150-fold from bovine liver mitochondria. The lipoylation was dependent on lipoyl-AMP, apo-H-protein, and lipoyltransferase. The partially purified lipoyltransferase had no lipoate-activating activity. These results provide the first evidence that in mammals two consecutive reactions are required for the attachment of lipoic acid to the acceptor protein: the activation of lipoic acid to lipoyl-AMP catalyzed by lipoate-activating enzyme and the transfer of the lipoyl group to an N epsilon-amino group of a lysine residue to apoprotein by lipoyl-AMP:N epsilon-lysine lipoyltransferase.  相似文献   

2.
In an earlier study (S. W. Jordan and J. E. Cronan, Jr., J. Biol. Chem. 272:17903-17906, 1997) we reported a new enzyme, lipoyl-[acyl carrier protein]-protein N-lipoyltransferase, in Escherichia coli and mitochondria that transfers lipoic acid from lipoyl-acyl carrier protein to the lipoyl domains of pyruvate dehydrogenase. It was also shown that E. coli lipB mutants lack this enzyme activity, a finding consistent with lipB being the gene that encoded the lipoyltransferase. However, it remained possible that lipB encoded a positive regulator required for lipoyltransferase expression or action. We now report genetic and biochemical evidence demonstrating that lipB encodes the lipoyltransferase. A lipB temperature-sensitive mutant was shown to produce a thermolabile lipoyltransferase and a tagged version of the lipB-encoded protein was purified to homogeneity and shown to catalyze the transfer of either lipoic acid or octanoic acid from their acyl carrier protein thioesters to the lipoyl domain of pyruvate dehydrogenase. In the course of these experiments the ATG initiation codon commonly assigned to lipB genes in genomic databases was shown to produce a nonfunctional E. coli LipB protein, whereas initiation at an upstream TTG codon gave a stable and enzymatically active protein. Prior genetic results (T. W. Morris, K. E. Reed, and J. E. Cronan, Jr., J. Bacteriol. 177:1-10, 1995) suggested that lipoate protein ligase (LplA) could also utilize (albeit poorly) acyl carrier protein substrates in addition to its normal substrates lipoic acid plus ATP. We have detected a very slow LplA-catalyzed transfer of lipoic acid and octanoic acid from their acyl carrier protein thioesters to the lipoyl domain of pyruvate dehydrogenase. A nonhydrolyzable lipoyl-AMP analogue was found to competitively inhibit both ACP-dependent and ATP-dependent reactions of LplA, suggesting that the same active site catalyzes two chemically diverse reactions.  相似文献   

3.
Uptake of [35S]lipoate was studied in perfused rat liver and in isolated rat hepatocytes. During single-pass perfusion of [35S]lipoate about 30% of the radioactivity is retained in the liver. A substantial amount of 5,5'-dithiobis(2-nitrobenzoic acid)-reactive material appears in the effluent perfusate, while hepatic efflux of GSH is unchanged. The hepatic uptake of lipoate, the release of thiols, and also the biliary excretion of 35S-labeled compounds are suppressed by octanoate. In isolated hepatocytes the uptake of lipoate follows saturation kinetics showing a Km value of 38 microM and a Vmax of 180 pmol/mg X 10 s. The uptake is temperature-dependent; from the Arrhenius plot an activation energy of 14.8 kcal/mol at 20 microM lipoate is calculated. At high concentrations of lipoate (above 75 microM) a nonsaturable uptake component becomes predominant. Lipoate uptake is selectively inhibited by medium-chain fatty acids. Only slight inhibition is seen in the presence of long-chain fatty acids, and there is no inhibition with acetate or lactate. Substantial inhibition is also observed with acetylsalicylic acid, but not with taurocholate, bromosulfophthalein or biotin. Lipoate uptake can be inhibited by high concentrations of phloretin (200 microM) and is rather insensitive to 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (200 microM). The results indicate that hepatic uptake of lipoate at physiological concentrations is largely carrier-mediated.  相似文献   

4.
The activation of 4-bromocrotonic acid, 4-bromo-2-octenoic acid, valproic acid, and 3-methylglycidic acid by conversion to their CoA thioesters and the effects of these carboxylic acids on palmitoylcarnitine-supported respiration were studied with rat liver and rat heart mitochondria. 4-Bromocrotonic acid was activated by both liver and heart mitochondria, whereas 4-bromo-2-octenoic acid and valproic acid were only activated by liver mitochondria. 3-Methylglycidic acid was not a substrate of mitochondrial activation. All of the carboxylic acids that were activated also inhibited palmitoylcarnitine-supported respiration. 3-Methylglycidoyl-CoA was found to irreversibly inhibit 3-ketoacyl-CoA thiolase in a concentration-dependent and time-dependent manner. Together, these results lead to the conclusion that substituted medium-chain carboxylic acids, which enter mitochondria directly, may inhibit β-oxidation as long as they are activated and perhaps further metabolized in the mitochondrial matrix to compounds that sequester CoA and/or inhibit β-oxidation enzymes. Liver is more susceptible to inhibition by such xenobiotic carboxylic acids due to the broader substrate specificity of its mitochondrial medium-chain acyl-CoA synthetase (EC 6.2.1.2).  相似文献   

5.
Lipoic acid is an essential coenzyme required for activity of several key enzyme complexes, such as the pyruvate dehydrogenase complex, in the central metabolism. In these complexes, lipoic acid must be covalently attached to one of the component proteins for it to have biological activity. We report the cloning and characterization of Arabidopsis thaliana LIP2 cDNA for lipoyltransferase that catalyzes the transfer of the lipoyl group from lipoyl-acyl carrier protein to lipoate-dependent enzymes. This cDNA was shown to code for lipoyltransferase by its ability to complement an Escherichia coli lipB null mutant lacking lipoyltransferase activity. The expressed enzyme in the E. coli mutant efficiently complemented the activity of pyruvate dehydrogenase complex, but less efficiently than that of 2-oxoglutarate dehydrogenase complex. Comparison of the deduced amino acid sequence of LIP2 with those of E. coli and yeast lipoyltransferases showed a marked sequence similarity and the presence of a leader sequence presumably required for import into mitochondria. Southern and northern hybridization analyses suggest that LIP2 is a single-copy gene and is expressed as an mRNA of 860 nt in leaves. Western blot analysis with an antibody against lipoyltransferase demonstrated that a 29 kDa form of lipoyltransferase is located in the mitochondrial compartment of A. thaliana.  相似文献   

6.
Lipoyltransferase catalyzes the transfer of the lipoyl group from lipoyl-AMP to the lysine residue of the lipoate-dependent enzymes. We isolated human lipoyltransferase cDNA and genomic DNA. The cDNA insert contained a 1119-base pair open reading frame encoding a precursor peptide of 373 amino acids. Predicted amino acid sequence of the protein shares 88 and 31% identity with bovine lipoyltransferase and Escherichia coli lipoate-protein ligase A, respectively. Northern blot analyses of poly(A)+ RNA indicated a major species of about 1.5 kb. mRNA levels of lipoyltransferase were highest in skeletal muscle and heart, showing good correlation with those of dihydrolipoamide acyltransferase subunits of pyruvate, 2-oxoglutarate and branched-chain 2-oxo acid dehydrogenase complexes and H-protein of the glycine cleavage system which accept lipoic acid as a prosthetic group. The human lipoyltransferase gene is a single copy gene composed of four exons and three introns spanning approximately 8 kb of genomic DNA. Some alternatively spliced mRNA species were found by 5'-RACE analysis, and the most abundant species lacks the third exon. The human lipoyltransferase gene was localized to chromosome band 2q11.2 by fluorescence in situ hybridization.  相似文献   

7.
A conserved sequence motif within the class 1 glutamine amidotransferase (GATase) domain of CTP synthases was identified. The sequence motif in the Lactococcus lactis enzyme is (429)GGTLRLG(435). This motif was present only in CTP synthases and not in other enzymes that harbor the GATase domain. Therefore, it was speculated that this sequence was involved in GTP activation of CTP synthase. Other members of the GATase protein family are not activated allosterically by GTP. Residues Thr-431 and Arg-433 were changed by site directed mutagenesis to the sterically similar residues valine and methionine, respectively. The resulting enzymes, T431V and R433M, had both lost the ability for GTP to activate the uncoupled glutaminase activity and showed reduced GTP activation of the glutamine-dependent CTP synthesis reaction. The T431V enzyme had a similar activation constant, K(A), for GTP, but the activation was only 2-3-fold compared with 35-fold for the wild type enzyme. The R433M enzyme was found to have a 10-15-fold lower K(A) for GTP and a concomitant decrease in V(app). The activation by GTP of this enzyme was about 7-fold. The kinetic parameters for saturation with ATP, UTP, and NH(4)Cl were similar for wild type and mutant enzymes, except that the R433M enzyme only had half the V(app) of the wild type enzyme when NH(4)Cl was the amino donor. The mutant enzymes T431V and R433M apparently had not lost the ability to bind GTP, but the signal transmitted through the enzyme to the active sites upon binding of the allosteric effector was clearly disrupted in the mutant enzymes.  相似文献   

8.
Antibody-dependent cellular cytotoxicity is initiated when low affinity Fc receptors (Fc gamma R type III/CD16) on NK cells bind to sensitized (i.e., antibody coated) target cells. Fc gamma R cross-linkage induces the activation of phospholipase C (PLC), which hydrolyses membrane phosphoinositides, generating inositol-1,4,5-trisphosphate and sn-1,2-diacylglycerol as second messengers. However, the mechanism that couples Fc gamma R stimulation to PLC activation remains unknown. In this study, we investigated whether the Fc gamma R is coupled to PLC via a guanine nucleotide-binding (G) protein or an alternative pathway. Stimulation of electropermeabilized human NK cells with GTP gamma S induced inositol phosphate (IP) release, indicating the presence of a G protein-linked PLC activity in these cells. However, stimulation with both anti-Fc gamma R mAb and GTP gamma S provoked additive rather than synergistic increases in IP formation. Furthermore, exogenous GDP strongly inhibited GTP gamma S-stimulated IP release, but failed to inhibit the response to anti-Fc gamma R mAb stimulation. These results suggested GTP gamma S and anti-Fc gamma R mAb activated PLC through distinct regulatory mechanisms, and that Fc gamma R was not linked to PLC via a G protein. Hence, an alternative transduction mechanism for Fc gamma R-PLC coupling was considered. Antibody-mediated Fc gamma R cross-linkage was shown to rapidly stimulate tyrosine phosphorylation of multiple proteins in NK cells. Pretreatment with the tyrosine kinase inhibitor, herbimycin A, inhibited these phosphorylation events and disrupted the coupling between Fc gamma R ligation and PLC activation. These observations suggest that Fc gamma R in NK cell is coupled to PLC via a G protein-independent, but tyrosine kinase-dependent pathway.  相似文献   

9.
Wada M  Yasuno R  Wada H 《FEBS letters》2001,506(3):286-290
In plant cells, the pyruvate dehydrogenase (PDH) complex that requires lipoic acid as an essential coenzyme is located in plastids and mitochondria. The enzyme complex has to be lipoylated in both organelles. However, the lipoyltransferase located in plastids has not been reported. In this study, an Arabidopsis thaliana LIP2p cDNA for a lipoyltransferase located in plastids has been identified. We have shown that this cDNA encodes a lipoyltransferase by demonstrating its ability to complement an Escherichia coli mutant lacking lipoyltransferase activity, and that LIP2p is targeted into chloroplasts. These findings suggest that LIP2p is located in plastids and responsible for lipoylation of the plastidial PDH complex.  相似文献   

10.
GTP is an allosteric activator of CTP synthase and acts to increase the k(cat) for the glutamine-dependent CTP synthesis reaction. GTP is suggested, in part, to optimally orient the oxy-anion hole for hydrolysis of glutamine that takes place in the glutamine amidotransferase class I (GATase) domain of CTP synthase. In the GATase domain of the recently published structures of the Escherichia coli and Thermus thermophilus CTP synthases a loop region immediately proceeding amino acid residues forming the oxy-anion hole and named lid L11 is shown for the latter enzyme to be flexible and change position depending on the presence or absence of glutamine in the glutamine binding site. Displacement or rearrangement of this loop may provide a means for the suggested role of allosteric activation by GTP to optimize the oxy-anion hole for glutamine hydrolysis. Arg359, Gly360 and Glu362 of the Lactococcus lactis enzyme are highly conserved residues in lid L11 and we have analyzed their possible role in GTP activation. Characterization of the mutant enzymes R359M, R359P, G360A and G360P indicated that both Arg359 and Gly360 are involved in the allosteric response to GTP binding whereas the E362Q enzyme behaved like wild-type enzyme. Apart from the G360A enzyme, the results from kinetic analysis of the enzymes altered at position 359 and 360 showed a 10- to 50-fold decrease in GTP activation of glutamine dependent CTP synthesis and concomitant four- to 10-fold increases in K(A) for GTP. The R359M, R359P and G360P also showed no GTP activation of the uncoupled glutaminase reaction whereas the G360A enzyme was about twofold more active than wild-type enzyme. The elevated K(A) for GTP and reduced GTP activation of CTP synthesis of the mutant enzymes are in agreement with a predicted interaction of bound GTP with lid L11 and indicate that the GTP activation of glutamine dependent CTP synthesis may be explained by structural rearrangements around the oxy-anion hole of the GATase domain.  相似文献   

11.
Identification of the GTP-binding proteins from human platelet particulate fractions was attained by their purification via successive column chromatography steps followed by amino acid sequencing. To enhance the likelihood of identifying the GTP-binding proteins, two assays were employed to monitor GTP-binding activities: (i) guanosine 5'-(3-O-[35S]thio)triphosphate (GTP gamma S)-binding followed by rapid filtration and ii) [alpha-32P]GTP-binding following sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electroblotting onto nitrocellulose membranes. The latter assay permitted the isolation of a 28-kDa GTP-binding protein that bound [alpha-32P]GTP prominently but was only poorly detected with the GTP gamma S-binding assay. The amino acid sequences of three peptide fragments derived from the 28-kDa protein were identical to regions of the amino acid sequence deduced from a simian ral cDNA with the exception of one conservative substitution (Asp147----Glu). A full length human ral cDNA was isolated from a placental cDNA library, and its deduced amino acid sequence, compared with simian ral, also contained the Asp----Glu substitution along with two other substitutions and an additional three NH2-terminal amino acids. In addition to the 28-kDa protein, two distinct 25-kDa GTP-binding proteins were purified from platelets. One of these proteins has been previously characterized as G25K, an abundant low molecular mass GTP-binding protein. Partial amino acid sequence obtained from the second unidentified 25-kDa protein indicates that it is the product of the rac1 gene; a member of a newly identified gene family which encode for low molecular mass GTP-binding proteins (Didsbury, J., Weber, R.F., Bokoch, G. M., Evans, T., and Snyderman, R. (1989) J. Biol. Chem. 264, 16378-16382). These results identify two new GTP-binding proteins in human platelets, ral, the major protein that binds [alpha-32P]GTP on nitrocellulose transfers, and rac1, a substrate for botulinum C3 ADP-ribosyltransferase.  相似文献   

12.
Asparagusate dehydrogenases I and II and lipoyl dehydrogenase have been obtained in homogeneous state from asparagus mitochondria. They are flavin enzymes with 1 mol of FAD/mol of protein. Asparagusate dehydrogenases I and II and lipoyl dehydrogenase have s20,w of 6.22 S, 6.39 S, and 5.91 S, respectively, and molecular weights of 111,000, 110,000, and 95,000 (sedimentation equilibrium) or 112,000, 112,000, and 92,000 (gel filtration). They are slightly acidic proteins with isoelectric points of 6.75, 5.75, and 6.80. Both asparagusate dehydrogenases catalyzed the reaction Asg(SH)2 + NAD+ equilibrium AsgS2 + NADH + H+ and exhibit lipoyl dehydrogenase and diaphorase activities. Lipoyl dehydrogenase is specific for lipoate and has no asparagusate dehydrogenase activity. NADP cannot replace NAD in any case. Optimum pH for substrate reduction of the three enzymes are near 5.9. Asparagusate dehydrogenases I and II have Km values of 21.5 mM and 20.0 mM for asparagusate and 3.0 mM and 3.3 mM for lipoate, respectively. Lipoyl dehydrogenase activity of asparagusate dehydrogenases is enhanced by NAD and surfactants such as lecithin and Tween 80, but asparagusate dehydrogenase activity is not enhanced. Asparagusate dehydrogenases are strongly inhibited by mercuric ion, p-chloromercuribenzoic acid, and N-ethylmaleimide. Amino acid composition of the three enzymes is presented and discussed.  相似文献   

13.
The experiment has shown that a complex of functionally related vitamins including thiamine, lipoate, D-pantothenate, nicotinate and riboflavine in "pyruvate-dehydrogenase" ratios decreases inhibition of the activity of alpha-keto acid dehydrogenases in the brain and liver with thiopental anesthesia, intensifies arrival of [35S]-lipoate to the brain and decreases acute toxicity of sodium thiopental (TnNa). The same complex (where thiamine, pantothenate and riboflavine are substituted by the corresponding coenzyme forms) complemented by the components stimulating the function of GABA-bypath of the brain as administered to rats with serious craniocerebral injury on the background of prolonged anaesthesia effect improves recovery of the brain functions, that is followed by normalization of ketoglutarate-dehydrogenase activity, maintenance of GABA-bypath function and by a decrease of GABA and glutamate content in the brain. The results obtained substantiate the advisability to use vitamin-coenzyme-metabolic complex in the acute period of traumatic brain disease aimed to increase efficiency of the antihypoxic TnNa effect and to correct its undesirable effects.  相似文献   

14.
The uncoupling protein 1 (UCP1) is a H(+) carrier which plays a key role in heat generation in brown adipose tissue. The H(+) transport activity of UCP1 is activated by long-chain fatty acids and inhibited by purine nucleotides. While nucleotide binding has been well characterized, the interaction of fatty acid with UCP1 remains unknown. Here I demonstrate the binding of fatty acids by competition with a fluorescent nucleotide probe 2(')-O-dansyl guanosine 5(')-triphosphate (GTP), which has been shown previously to bind at the nucleotide binding site in UCP1. Fatty acids but not their esters competitively inhibit the binding of 2(')-O-dansyl GTP to UCP1. The fatty acid effect was enhanced at higher pH, suggesting the binding of fatty acid anion to UCP1. The inhibition constants K(i) were determined by fluorescence titrations for various fatty acids. Short-chain (C<8) fatty acids display no affinity, whereas medium-chain (C10-14) and unsaturated C18 fatty acids exhibit stronger affinity (K(i)=65 microM, for elaidic acid). This specificity profile agrees with previous functional data obtained in both proteoliposomes and mitochondria, suggesting a possible physiological role of this fatty acid binding site.  相似文献   

15.
Codon recognition by aminoacyl-tRNA on the ribosome triggers a process leading to GTP hydrolysis by elongation factor Tu (EF-Tu) and release of aminoacyl-tRNA into the A site of the ribosome. The nature of this signal is largely unknown. Here, we present genetic evidence that a specific set of direct interactions between ribosomal protein S12 and aminoacyl-tRNA, together with contacts between S12 and 16S rRNA, provide a pathway for the signaling of codon recognition to EF-Tu. Three novel amino acid substitutions, H76R, R37C, and K53E in Thermus thermophilus ribosomal protein S12, confer resistance to streptomycin. The streptomycin-resistance phenotypes of H76R, R37C, and K53E are all abolished by the mutation A375T in EF-Tu. A375T confers resistance to kirromycin, an antibiotic freezing EF-Tu in a GTPase activated state. H76 contacts aminoacyl-tRNA in ternary complex with EF-Tu and GTP, while R37 and K53 are involved in the conformational transition of the 30S subunit occurring upon codon recognition. We propose that codon recognition and domain closure of the 30S subunit are signaled through aminoacyl-tRNA to EF-Tu via these S12 residues.  相似文献   

16.
Coenzymes introduced in the ratio, peculiar for pyruvate dehydrogenase complex into the medium containing fresh-isolated mitochondria and oxidation substrate--pyruvate increase accumulation of [35S] lipoate by these organelles. This process is highly stimulated by introducing either the only CoA or a coenzyme mixture (CoA, thiamine pyrophosphate, FAD, NAD). Addition of phosphate-extracted components of mitochondria and their protein fraction with coenzymes in the ratio indicated above provides maximum accumulation of [35S] lipoate by liver mitochondria. An equimolar mixture of coenzymes as well as protein components evoke no reliable variations in [35S] lipoate accumulation by albino rat liver mitochondria, while addition of the only thiamine pyrophosphate decreases this accumulation. Reconstruction of multienzyme complexes of coenzymes and apoenzymes on mitochondrion membranes accounts for the results obtained.  相似文献   

17.
Myeong H  Jeoung D  Kim H  Ha JH  Lee Y  Kim KH  Park C  Kaang BK 《Gene》2000,257(1):99-107
Dopamine D2 receptor (DRD2) is one of the five dopamine receptors with seven transmembrane domains that are coupled to the G protein. We have cloned and characterized the genomic and cDNA sequences of the canine DRD2 gene, which are 12.7 and 2.7 kb in size, respectively. The genomic DNA is composed of seven exons and six introns, encoding a 443 amino acid protein with 95% amino acid identity to other mammalian D2 receptors. A length polymorphism was detected in intron 3 of the receptor gene. We also characterized alternatively spliced forms of DRD2 cDNAs, DRD2L and DRD2S. They showed a higher level of expression in midbrain and thalamus. The ratio between the long and short form is similar in RT-PCR reaction. In human and rodent, the same two spliced forms are known to be coupled to G(i)-type heterotrimeric GTP binding protein, thereby opening an inwardly rectifying potassium channel, GIRK1. When the canine DRD2L and DRD2S were heterologously expressed in Xenopus oocytes, both forms activated GIRK1 potassium channels through coupling with G(i) protein. This activation was dose-dependent, demonstrating its ligand specificity.  相似文献   

18.
UMP kinase (UMPK), a key bacterial pyrimidine nucleotide biosynthesis enzyme, is UTP-inhibited and GTP-activated. We delineate the GTP site of Escherichia coli UMPK by alanine mutagenesis of R92, H96, R103, W119 or R130, abolishing GTP activation; of S124 and R127, decreasing affinity for GTP; and of N111 and D115, with little detrimental effect. We exclude the correspondence with the modulatory ATP site of Bacillus anthracis UMPK, confirming the functionality of the GTP site found by Evrin. Mutants R92A, H96A and R127A are constitutively activated, suggesting key roles of these residues in allosteric signal transduction and of positive charge neutralization in triggering activation. No mutation hampered UTP inhibition, excluding overlapping of the UTP and GTP sites.  相似文献   

19.
The dormant O2(-)-generating oxidase in plasma membranes from unstimulated neutrophils becomes activated in the presence of arachidonate and a multicomponent cytosolic fraction. This process is stimulated by nonhydrolyzable GTP analogues and may involve a pertussis toxin insensitive GTP-binding protein. Our studies were designed to characterize the putative GTP-binding protein, localizing it to either membrane or cytosolic fraction in this system. Exposure of the isolated membrane fraction to guanosine-5'-(3-O-thio)triphosphate (GTP gamma S), with or without arachidonate, had no effect on subsequent NADPH oxidase activation by the cytosolic fraction. Preexposure of the cytosolic fraction to GTP gamma S alone did not enhance activation of the membrane oxidase. However, preexposure of the cytosol to GTP gamma S then arachidonate caused a four-fold enhancement of its ability to activate the membrane oxidase. This enhancement was evident after removal of unbound GTP gamma S and arachidonate, and was not augmented by additional GTP gamma S during membrane activation. A reconstitution assay was developed for cytosolic component(s) responsible for the GTP gamma S effect. Cytosol preincubated with GTP gamma 35S then arachidonate was fractionated by anion exchange chromatography. A single peak of protein-bound GTP gamma 35S was recovered that had reconstitutive activity. Cytosol preincubated with GTP gamma 35S alone was similarly fractionated and the same peak of protein-bound GTP gamma 35S was observed. However, this peak had no reconstitutive activity. We conclude that the GTP-binding protein regulating this cellfree system is located in the cytosolic fraction. The GTP gamma S-liganded form of this protein may be activated or stabilized by arachidonate.  相似文献   

20.
G Yamanaka  F Eckstein  L Stryer 《Biochemistry》1986,25(20):6149-6153
The interaction of six hydrolysis-resistant analogues of GTP with transducin, the signal-coupling protein in vertebrate photoreceptors, was investigated. GppNHp and GppCH2p differ from GTP at the bridging position between the beta- and gamma-phosphate groups. The other analogues studied (GTP gamma F, GTP gamma OMe, GTP gamma OPh, and GTP gamma S) differ from GTP in containing a substituent on the gamma-phosphorus atom or at a nonbridging gamma-oxygen atom. Competition binding experiments were carried out by adding an analogue, [alpha-32P]GTP, and a catalytic amount of photoexcited rhodopsin (R) to transducin and measuring the amount of bound [gamma-32P]GTP. The order of effectiveness of these analogues in binding to transducin was GTP gamma S greater than GTP much greater than GppNHp greater than GTP gamma OPh greater than GTP gamma OMe greater than GppCH2p greater than GTP gamma F A second assay measured the effectiveness of GTP gamma S, GppNHp, and GppCH2p in eluting transducin from disc membranes containing R. The basis of this assay is that transducin is released from disc membranes when it is activated to the GTP form. The relative potency of these three analogues in converting transducin from a membrane-bound to a soluble form was 1000, 75, and 1, respectively. Stimulation of cGMP phosphodiesterase activity served as a third criterion of the interaction of these analogues with transducin. The order of effectiveness of these analogues in promoting the transducin-mediated activation of the phosphodiesterase was GTP gamma S greater than GTP much greater than GppNHp greater than GTP gamma OPh much greater than GppCH2p greater than GTP gamma OMe greater than GTP gamma F GTP gamma S was more than a 1000 times as potent as GTP gamma F in activating the phosphodiesterase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号