首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
In this work, a recombinant Escherichia coli was constructed by overexpressing glucosamine (GlcN) synthase and GlcN-6-P N-acetyltransferase for highly efficient production of GlcN and N-acetylglucosamine (GlcNAc). For further enhancement of GlcN and GlcNAc production, the effects of different glucose feeding strategies including constant-rate feeding, interval feeding, and exponential feeding on GlcN and GlcNAc production were investigated. The results indicated that exponential feeding resulted in relatively high cell growth rate and low acetate formation rate, while constant feeding contributed to the highest specific GlcN and GlcNAc production rate. Based on this, a multistage glucose supply approach was proposed to enhance GlcN and GlcNAc production. In the first stage (0–2 h), batch culture with initial glucose concentration of 27 g/l was conducted, whereas the second culture stage (2–10 h) was performed with exponential feeding at μ set = 0.20 h−1, followed by feeding concentrated glucose (300 g/l) at constant rate of 32 ml/h in the third stage (10–16 h). With this time-variant glucose feeding strategy, the total GlcN and GlcNAc yield reached 69.66 g/l, which was enhanced by 1.59-fold in comparison with that of batch culture with the same total glucose concentration. The time-dependent glucose feeding approach developed here may be useful for production of other fine chemicals by recombinant E. coli.  相似文献   

2.
Styrene is a large volume, commodity petrochemical with diverse commercial applications, including as a monomer building-block for the synthesis of many useful polymers. Here we demonstrate how, through the de novo design and development of a novel metabolic pathway, styrene can alternatively be synthesized from renewable substrates such as glucose. The conversion of endogenously synthesized l-phenylalanine to styrene was achieved by the co-expression of phenylalanine ammonia lyase and trans-cinnamate decarboxylase. Candidate isoenzymes for each step were screened from bacterial, yeast, and plant genetic sources. Finally, over-expression of PAL2 from Arabidopsis thaliana and FDC1 from Saccharomyces cerevisiae (originally classified as ferulate decarboxylase) in an l-phenylalanine over-producing Escherichia coli host led to the accumulation of up to 260 mg/L in shake flask cultures. Achievable titers already approach the styrene toxicity threshold (determined as ∼300 mg/L). To the best of our knowledge, this is the first report of microbial styrene production from sustainable feedstocks.  相似文献   

3.
Sixty yeast strains were previously screened for their ability to produce acetic acid, in shaken flask batch culture, from either glucose or ethanol. Seven of the strains belonging to the Brettanomyces and Dekkera genera, from the ARS Culture Collection, Peoria, IL, were further evaluated for acetic acid production in bioreactor batch culture at 28 °C, constant aeration (0.75 v/v/m) and pH (6.5). The medium contained either 100 g glucose/l or 35 g ethanol/l as the carbon/energy source. Dekkera intermedia NRRL YB-4553 produced 42.8 and 14.9 g acetic acid/l from the two carbon sources, respectively, after 64.5 h. The optimal pH was determined to be 5.5. When the initial glucose concentration was 150 or 200 g/l, the yeast produced 57.5 and 65.1 g acetic acid/l, respectively.  相似文献   

4.
Culture conditions have been optimized for a newly isolated yeast strain Candida viswanathii PBR2 which is capable of reducing a wide variety of aryl ketones with high stereospecificity. Studies on the culture conditions and catalytic performance of this microorganism showed that the carbonyl reductase occurs constitutively in the cells and its production is enhanced by feeding with acetophenone (2 mM) during the early period of cultivation. Mannitol (1%, wv−1) was found to be beneficial both for growth and enzyme production. Supplementation of the media with yeast extract (1.0%, wv−1) and Ca2+ (4 mM) enhanced the enzyme production. The optimal temperature and pH for the growth and enzyme production were 25 °C and 9.0, respectively. Excellent conversions along with almost absolute enantioselectivity were observed when the resting cells of this yeast strain were exploited to carry out the stereoselective reduction of a number of aryl ketones.  相似文献   

5.
Abstract

Response surface methodology (RSM) was employed to enhance the production of a thermostable alkaline protease from Bacillus circulans. Significant influences of peptone, yeast extract, and glucose on protease production were noted with a one-variable-at-a-time optimization strategy. Then, a full factorial central composite design (CCD) was applied to study the effects of glucose, peptone, and yeast extract to determine the optimal concentrations of these compounds for protease production by B. circulans under shake flask fermentation conditions. The statistical reliability and significance of the model was validated by an F-test for analysis of variance (ANOVA); enzyme production was improved significantly under optimized conditions. The enzyme was purified by ammonium sulphate fractionation, and gel filtration chromatography. Maximum enzyme activity was observed at 60°C temperature, and at pH 10. Alkaline protease from B. circulans showed excellent compatibility and stability in the presence of commercial detergents like Ariel, Surf Excel, Tide, Rin, Nirma, Wheel, and Doctor and showed excellent blood destaining effectiveness with commercial detergents.  相似文献   

6.
Central composite experimental designs realized with flask cultures and completed by fermentor studies were used to developB. japonicum liquid inoculants. Two different media are described, using glycerol or glucose, in the presence of only 1 g/l yeast extract. They allow the production of cultures containing more than 1010 viable cell/ml, able to nodulate soybean efficiently.  相似文献   

7.
Natamycin has been widely applied in medical treatments and food protection widely due to its effective inhibition to the growth of yeast and mold. As polyene macrolide antibiotic, the biosynthesis pathway of natamycin is relatively clear. To regulate the biosynthesis of natamycin, additions of precursors affecting cell growth and natamycin production were investigated. The results showed that 0.003% (w/v) potassium ferrocyanide and sodium propionate: n-butanol at a ratio of 4:1 was added into the broth at 0 and 24?hr, respectively, and they contributed to yield natamycin, reaching 1.62?g?L?1 (174.6% higher than control). Furthermore, response surface methodology was undertaken to enhance natamycin production by Streptomyces natalensis HDMNTE-01 (a wild strain). The optimum conditions determined were: glucose 3.97%; soya peptone 2%; yeast extract 0.5%; original pH 7.0; inoculum volume 6%; growth in a 250-mL flask containing 24.68?mL of medium; shaken (220?rpm) at 28°C for 4 days. Under the optimized conditions, the yield was 2.81?g?L?1 natamycin in 5-L fermentor when the fermentation was processed.  相似文献   

8.
A mutant strain of the bacterium Pseudomonas sp. ATCC 31461 that exhibited elevated production of the polysaccharide gellan on glucose or corn syrup as a carbon source was isolated. Gellan production by the mutant strain was about twofold higher than its parent strain on glucose or corn syrup after 48 h of growth, and about 1.4-fold higher after 72 h. An increase in biomass production was not correlated with enhanced gellan synthesis by the mutant strain. The increased gellan production by the mutant strain on either carbon source resulted in an increase in its culture medium viscosity and the viscosity of the isolated polysaccharide produced by glucose-grown cells. No differences in the glucuronic acid content of the polysaccharides produced by the mutant and parent strains were observed. Journal of Industrial Microbiology & Biotechnology (2002) 29, 185–188 doi:10.1038/sj.jim.7000278 Received 13 February 2002/ Accepted in revised form 20 May 2002  相似文献   

9.
In liquid culture conditions, the yeast-like fungus Tremella mesenterica occurs in the yeast state and synthesizes an exopolysaccharide (EPS) capsule, which is eventually released into the culture fluid. It is composed of an α-1,3-D-mannan backbone, to which β-1,2 side chains are attached, consisting of D-xylose and D-glucuronic acid. Potato dextrose broth (PDB) seemed to be an excellent medium for both growth of the yeast cells and synthesis of the EPS. This medium is composed solely of an extract of potatoes to which glucose was added. Yet an important disadvantage of this production medium is the presence of starch in the potato extract, since Tremella cells are not capable of metabolizing this component; furthermore, it coprecipitates upon isolation of the polymer [3]. In this respect, it was essential to remove the starch in order to achieve high polysaccharide production and recovery. A good method was the removal of starch through ultrafiltration of the PDB medium before inoculation of the strain. This resulted in an excellent starch-free medium in which other components essential for polysaccharide production were still present [3]. Through implementation of single and cyclic fed-batch fermentations with glucose feed, 1.6- and 2.2-fold increases in EPS yield were obtained, respectively. Lowering the carbon source level by using a cyclic fed-batch technique might decrease the osmotic effect of glucose or any catabolite regulation possibly exerted by this sugar on enzymes involved in EPS synthesis. Journal of Industrial Microbiology & Biotechnology (2002) 29, 181–184 doi:10.1038/sj.jim.7000276 Received 18 March 2002/ Accepted in revised form 20 May 2002  相似文献   

10.
Syringin production and related secondary metabolism enzyme activities in suspension cultures of Saussurea medusa treated with different elicitors (yeast extract, chitosan and Ag+) were investigated. All elicitors enhanced syringin production, and the optimal feeding protocol was the combined addition of 1.5% (v/v) yeast extract, 0.2 g l−1 chitosan and 75 μM Ag+ at the 15th day of the cell culture. The highest syringin production reached 741.9 mg l−1, which was 3.6−fold that of the control. The glucose−6-phosphate dehydrogenase (EC 1.1.1.49), phenylalanine ammonia lyase (EC 4.3.1.5) and peroxidase (EC 1.11.1.7) activities increased significantly after elicitor treatment. The maximum enzyme activities were obtained when the treatment time was 6 h.  相似文献   

11.
The effect of medium components (carbon, nitrogen, and mineral sources) and environmental factors (initial pH and temperature) for mycelial growth and exopolysaccharide (EPS) production in Sarcodon aspratus(Berk) S.lto TG-3 was investigated. The optimal temperature (25°C) and initial pH (5.0) for the EPS production in shake flask cultures of S. aspratus were determined using the two-dimensional contour plot. The most suitable carbon, nitrogen, and mineral sources for EPS production were glucose, yeast extract, CaCl2 and KH2PO4, respectively. Notably, the EPS production was significantly enhanced by supplementation of calcium ion. Subsequently, the optimum concentration of glucose (30gl–1), yeast extract (15gl–1), CaCl2 (1.1gl–1), and KH2PO4 (1.2gl–1) were determined using the orthogonal matrix method. The effects of nutritional requirement on the mycelial growth of S.aspratuswere in regular sequence of glucose>KH2PO4>yeast extract>CaCl2, and those on EPS production were in the order of glucose>yeast extract>CaCl2>KH2PO4. Under the optimal culture conditions, the maximum EPS concentration in a 5-l stirred-tank reactor was 2.68gl–1 after 4days of fermentation, which was 6-fold higher than that at a basal medium. The two-dimensional contour plot and orthogonal matrix method allowed us to find the relationship between environmental factors and nutritional requirement by determining optimal operating conditions for maximum EPS production in S.asparatus. The statistical experiments used in this work can be useful strategies for optimization of submerged culture processes for other mushrooms.  相似文献   

12.
Both crude exo-biopolymers and mycelial biomass, produced by liquid culture of Cordyceps species, are believed to possess several potential health benefits. As a result of its known biological activities, Cordyceps militaris has been extensively characterized in regards to potential medicinal applications. However, optimized liquid culture conditions for enhanced polysaccharide productivity have yet to be developed, which is a necessary step for industrial applications. Therefore, in this study, the liquid culture conditions were optimized for maximal production of mycelial biomass and exo-polysaccharide (EPS) by C. militaris. The effects of medium composition, environmental factors, and C/N ratio were investigated. Among these variables 80 g, glucose; 10 g, yeast extract; 0.5 g, MgSO4·7H2O; and 0.5 g, KH2PO4 in 1 L distilled water were found to be the most suitable carbon, nitrogen, and mineral sources, respectively. The optimal temperature, initial pH, agitation, and aeration were determined to be 24°C, uncontrolled pH, 200 rpm, and 1.5 vvm, respectively. Under these optimal conditions, mycelial growth in shake flask cultures and 5 L jar bioreactors was 29.43 and 40.60 g/L, respectively, and polysaccharide production in shake flask cultures and 5 L jar bioreactors was 2.53 and 6.74 g/L, respectively.  相似文献   

13.
The suitability of using a simple brewer's yeast extract (BYE), prepared by autolysis of complete beer slurry, for growth and sporulation of Bacillus thuringiensis kurstaki was studied in baffled shake flasks. In a standard buffered medium with 2.5% (w/v) glucose and 1% (w/v) brewer's yeast extract, growth of B. t. kurstaki resulted in a low biomass production with considerable byproduct formation, including organic acids and a concomitant low medium pH, incomplete glucose utilization and marginal sporulation, whereas growth in the same medium with a commercial laboratory-grade yeast extract (Difco) resulted in a high biomass concentration, complete glucose utilization, relatively low levels of byproducts and complete sporulation (2.6 × 109 spores/ml). When glucose was left out of the medium, however, growth parameters and sporulation were comparable for BYE and commercial yeast extract, but absolute biomass levels and spore counts were low. Iron was subsequently identified as a limiting factor in BYE. After addition of 3 mg iron sulphate/l, biomass formation in BYE-medium more than doubled, low byproduct formation was observed, and complete sporulation occurred (2.8 × 109spores/ml). These data were slightly lower than those obtained in media with commercial yeast extract (3.6 × 109spores/ml), which also benefited, but to a smaller extent, from addition of iron.  相似文献   

14.
Aims: To study the optimization of submerged culture conditions for exopolysaccharide (EPS) production by Armillaria mellea in shake‐flask cultures and also to evaluate the performance of an optimized culture medium in a 5‐l stirred tank fermenter. Methods and Results: Shake flask cultures for EPS optimal nutritional production contained having the following composition (in g l?1): glucose 40, yeast extract 3, KH2PO4 4 and MgSO4 2 at an optimal temperature of 22°C and an initial of pH 4·0. The optimal culture medium was then cultivated in a 5‐l stirred tank fermenter at 1 vvm (volume of aeration per volume of bioreactor per min) aeration rate, 150 rev min?1 agitation speed, controlled pH 4·0 and 22°C. In the optimal culture medium, the maximum EPS production in a 5‐l stirred tank fermenter was 588 mg l?1, c. twice as great as that in the basal medium. The maximum productivity for EPS (Qp) and product yield (YP/S) were 42·02 mg l?1 d?1 and 26·89 mg g?1, respectively. Conclusions: The optimal culture conditions we proposed in this study enhanced the EPS production of A. mellea from submerged cultures. Significance and Impact of the Study: The optimal culturing conditions we have found will be a suitable starting point for a scale‐up of the fermentation process, helping to develop the production of related medicines and health foods from A. mellea.  相似文献   

15.
Summary The effect of medium composition and initial glucose concentration on production of hEGF by recombinant E. coli cells was investigated. Optimum hEGF production was observed in a yeast extract/acid hydrolysed casein/salts media containing an initial glucose concentration of 10 g.l-1. A maximum hEGF titer of 250 mg.l-1 was obtained in this medium after 32 h in laboratory fermenters with pH, temperature, agitation and aeration set at 6.8, 30°C, 500 rpm and 2 vvm, respectively.  相似文献   

16.
Specific growth rates (μ) of two strains of Saccharomyces cerevisiae decreased exponentially (R 2>0.9) as the concentrations of acetic acid or lactic acid were increased in minimal media at 30°C. Moreover, the length of the lag phase of each growth curve (h) increased exponentially as increasing concentrations of acetic or lactic acid were added to the media. The minimum inhibitory concentration (MIC) of acetic acid for yeast growth was 0.6% w/v (100 mM) and that of lactic acid was 2.5% w/v (278 mM) for both strains of yeast. However, acetic acid at concentrations as low as 0.05–0.1% w/v and lactic acid at concentrations of 0.2–0.8% w/v begin to stress the yeasts as seen by reduced growth rates and decreased rates of glucose consumption and ethanol production as the concentration of acetic or lactic acid in the media was raised. In the presence of increasing acetic acid, all the glucose in the medium was eventually consumed even though the rates of consumption differed. However, this was not observed in the presence of increasing lactic acid where glucose consumption was extremely protracted even at a concentration of 0.6% w/v (66 mM). A response surface central composite design was used to evaluate the interaction between acetic and lactic acids on the specific growth rate of both yeast strains at 30C. The data were analysed using the General Linear Models (GLM) procedure. From the analysis, the interaction between acetic acid and lactic acid was statistically significant (P≤0.001), i.e., the inhibitory effect of the two acids present together in a medium is highly synergistic. Journal of Industrial Microbiology & Biotechnology (2001) 26, 171–177. Received 06 June 2000/ Accepted in revised form 21 September 2000  相似文献   

17.
Maximum activity (8.9 IU/ml) of rifamycin oxidase in Curvularia lunata, grown in shake-flask culture at 28°C and pH 6.5, was after 96 h. Nearly all the glucose was used in 72 h. An initial culture pH of 6.5 and 28°C were optimum for the growth and enzyme production. Among various carbon and organic nitrogen sources, carboxymethylcellulose and peptone were the most effective for enzyme yield. The rate of enzyme production was enhanced when yeast extract was also added to the medium. The optimum medium for the production of rifamycin oxidase contained 10 g each of yeast extract, peptone and carboxymethylcellulose/l and 0.04% (NH4)2SO4.The author is with the Biochemical Engineering Research and Process Development Centre, Institute of Microbial Technology, Post Box 1304, Sector 39-A, Chandigarh 160 014, India  相似文献   

18.
FK520, also called ascomycin, is an immunosuppressive agent produced by Streptomyces hygroscopicus. Engineering the polyketide synthase genes of the parent strain generated novel FK520 analogs with the potential for improved in vivo stability. By replacing the acyl transferase (AT) domain in the polyketide synthase module 8 with an AT specific for methylmalonyl CoA (the rapamycin AT 3), the strain produced 13-desmethoxy-13-methyl-FK520 (13dmmFK520). Process development and scale-up studies of this recombinant S. hygroscopicus strain producing 13dmmFK520 are described here. Production kinetics and compound stability in fermentation broth were significantly different compared to the native FK520. Fermentation of the new strain resulted in the synthesis of a contaminating substance that co-purified with the 13dmmFK520. To optimize 13dmmFK520 production and to facilitate purification, growth parameters and media development were examined. Although a medium was identified that increased product titers by ca. 300%, the ratio of impurity to product was doubled. Lower dissolved oxygen (20% compared to 50% and 80%) increased titers by 20% with no appreciable effect on the concentration of impurity. Increasing the fermentation pH from 6.0 to 6.5 did not change the 13dmmFK520 titer, but reduced the impurity-to-product ratio by approximately 450%. Journal of Industrial Microbiology & Biotechnology (2002) 28, 12–16 DOI: 10.1038/sj/jim/7000208 Received 30 January 2001/ Accepted in revised form 26 August 2001  相似文献   

19.
A two-stage fed-batch process was designed to enhance erythritol productivity by the mutant strain of Candida magnoliae. The first stage (or growth stage) was performed in the fed-batch mode where the growth medium was fed when the pH of the culture broth dropped below 4.5. The second stage (or production stage) was started with addition of glucose powder into the culture broth when the cell mass reached about 75 g dry cell weight l−1. When the initial glucose concentration was adjusted to 400 g l−1 in the production stage, 2.8 g l−1 h−1 of overall erythritol productivity and 41% of erythritol conversion yield were achieved, which represented a fivefold increase in erythritol productivity compared with the simple batch fermentation process. A high glucose concentration in the production phase resulted in formation of organic acids including citrate and butyrate. An increase in dissolved oxygen level caused formation of gluconic acid instead of citric acid. Journal of Industrial Microbiology & Biotechnology (2000) 25, 100–103. Received 25 February 2000/ Accepted in revised form 08 June 2000  相似文献   

20.
Nine thraustochytrid strains isolated from subtropical mangroves were screened for their eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) production potential in a glucose yeast extract medium. Their ability to utilize okara (soymilk residue) for growth and EPA and DHA production was also evaluated. EPA yield was low in most strains, while DHA level was high on glucose yeast extract medium, producing 28.1–41.1% of total fatty acids, for all strains, with the exception of Ulkenia sp. KF13. The DHA yield of Schizochytrium mangrovei strains ranged from 747.7 to 2778.9 mg/l after 52 h of fermentation at 25°C. All strains utilized okara as a substrate for growth, but DHA yield was lower when compared with fermentation in a glucose yeast extract medium. Journal of Industrial Microbiology & Biotechnology (2001) 27, 199–202. Received 11 December 2000/ Accepted in revised form 29 June 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号