首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study was designed to examine whether photoperiod alone was effective to induce seasonal regulations in physiology in root voles (Microtus oeconomus) from the Qinghai-Tibetan plateau noted for its extreme cold environment. Root voles were randomly assigned into either long photoperiod (LD; 16L:8D) or short photoperiod (SD; 8L:16D) for 4 weeks at constant temperature (20 degrees C). At the end of acclimation, SD voles showed lower body mass and body fat coupled with higher energy intake than LD voles. SD greatly enhanced thermogenic capacities in root voles, as indicated by elevated basal metabolic rate (BMR), nonshivering thermogenesis (NST), mitochondrial protein content and uncoupling protein-1 (UCP1) content in brown adipose tissue (BAT). Although no variations in serum leptin levels were found between SD and LD voles, serum leptin levels were positively correlated with body mass and body fat mass, and negatively correlated with energy intake and UCP1 content in BAT, respectively. To summarize, SD alone is effective in inducing higher thermogenic capacities and energy intake coupled with lower body mass and body fat mass in root voles. Leptin is potentially involved in the photoperiod induced body mass regulation and thermogenesis in root voles.  相似文献   

2.
The present study was designed to examine whether photoperiod alone was effective to induce seasonal changes in physiology in voles (Eothenomys.) from the Hengduan Mountain region. Eothenomys miletus were randomly assigned into either long photoperiod (LD; 16L: 8D) or short photoperiod (SD; 8L: 16D) for 4 weeks at constant temperature (25 °C). At the end of acclimation, SD voles showed lower body mass and body fat coupled with higher energy intake than LD voles. SD greatly enhanced the thermogenic capacity of E. miletus, as indicated by an elevated nonshivering thermogenesis (NST), mitochondrial protein in brown adipose tissue (BAT); basal metabolic rate (BMR) was also raised. Although no variations in serum leptin levels were found between SD and LD voles, serum leptin levels were positively correlated with body mass and body fat mass, and negatively correlated with energy intake and UCP1 content in BAT, respectively. To summarize, SD alone is effective in inducing higher thermogenic capacities and energy intake coupled with lower body mass and body fat mass in root voles. Leptin is potentially involved in the photoperiod induced body mass regulation and thermogenesis in E. miletus. Our study shows that SD alone is effective.  相似文献   

3.
小型哺乳动物通过产热能力的调整来应对环境的胁迫。为探究外源瘦素对不同地区大绒鼠(Eothenomys miletus)适应性产热的影响,选取云南昆明和大理地区捕获的大绒鼠各14只,置于25℃±1℃,光周期为12L∶12D的环境中,每日腹腔注射瘦素,持续28 d。以LT502电子天平每两天测定大绒鼠的体重,采用食物平衡法每两天测定大绒鼠摄食量,以便携式呼吸代谢测量系统每7天测定静止代谢率(RMR)、非颤抖性产热(NST)。第28天处死动物后,采用酶联免疫吸附法测定线粒体蛋白含量、线粒体细胞色素c氧化酶(COX)活性、解偶联蛋白1(UCP1)含量、血清三碘甲状腺原氨酸(T3)、甲状腺素(T4)、瘦素水平以及促甲状腺激素释放激素(TRH)和促肾上腺皮质激素释放激素(CRH)水平。结果表明,注射瘦素后昆明和大理地区大绒鼠的体重和摄食量显著降低,RMR和NST增强,肝脏中线粒体蛋白含量和COX活性,褐色脂肪组织(BAT)中COX活性和UCP1含量,及血清T3、T4、T3/T4比值、TRH和CRH浓度均增加。瘦素水平与体重、摄食量呈负相关,血清T3水平与NST和UCP1含量呈正相关。此外,注射前昆...  相似文献   

4.
(1)
To investigate the effect of fasting and refeeding on the body mass, thermogenesis and serum leptin in Brandt's voles, the changes in body and body fat mass, resting metabolic rate (RMR), mitochondrial cytochrome c oxidase (COX) activity in liver and brown adipose tissue (BAT), uncoupling protein 1 (UCP1) content of BAT, serum leptin level and post-fasting food intake were monitored and measured.  相似文献   

5.
Environmental cues play important roles in the regulation of an animal's physiology and behavior. The purpose of the present study was to test the hypothesis that ambient temperature was a cue to induce adjustments in body mass, energy intake and thermogenic capacity, associated with changes in serum leptin levels in Brandt's voles (Lasiopodomys brandtii). We found that Brandt's voles increased resting metabolic rate (RMR) and energy intake and kept body mass stable when exposed to the cold while showed a significant increase in body mass after rewarming. The increase in body mass after rewarming was associated with the higher energy intake compared with control. Uncoupling protein 1 (UCP1) content in brown adipose tissue (BAT) increased in the cold and reversed after rewarming. Serum leptin levels decreased in the cold while increased after rewarming, associated with the opposite changes in energy intake. Further, serum leptin levels were positively correlated with body mass and body fat mass. Together, these data supported our hypothesis that ambient temperature was a cue to induce changes in body mass and metabolism. Serum leptin, as a starvation signal in the cold and satiety signal in rewarming, was involved in the processes of thermogenesis and body mass regulation in Brandt's voles.  相似文献   

6.
Reproduction, especially lactation, is associated with major metabolic adaptive changes. In this study, we investigated the metabolic changes and the roles of leptin during different periods of reproduction in primiparous Brandt's voles (Lasiopodomys brandtii). Energy intake, thermogenic capacity and serum leptin levels were examined in non-reproductive, mid pregnant, late pregnant, early lactating and peak lactating voles. Voles increased body mass by nearly 70% during late pregnancy compared to the non-breeding controls. The increase in body mass was mainly due to the increase in body fat mass which increased by 56%, and the growth of the reproductive tissues and digestive organs. Lactating voles decreased body fat by nearly 27% at peak lactation compared to the controls, and 53% compared to late pregnant voles. At the same time they increased food intake significantly. Uncoupling protein 1 (UCP1) content in brown adipose tissue (BAT) decreased significantly at peak lactation. Serum leptin increased significantly in the mid pregnancy, at a time when there was no increase in body fat, and remained at this high level in late pregnancy. Leptin levels decreased after parturition and reached a nadir at peak lactation. Serum leptin was negatively correlated with energy intake during lactation, but not during pregnancy. These data suggest that Brandt's voles adjust energy intake, thermogenic capacity and body reserves to match the high energy demands for reproduction. Hyperleptinemia, without decreased energy intake suggests a state of leptin resistance during pregnancy, and hypoleptinemia during lactation might act as a signal to stimulate energy intake.  相似文献   

7.
Small mammals inhabiting temperate and arctic regions exhibit annual adaptive adjustments in physiology, anatomy, and behavior. No data on the physiology of Maximowicz’s voles (Microtus maximowiczii) are available at present. Here we examined the seasonal changes in body mass, food intake, thermogenic capacity, serum leptin and thyroid hormone levels in wild-captured individuals from Inner Mongolian grassland, China. We further examined the effects of photoperiod on these parameters. Energy intake, resting metabolic rate, nonshivering thermogenesis (NST), and serum tri-iodothyronine (T3) levels increased while serum leptin and body mass decreased in the cold seasons. Serum T3 levels were positively correlated with NST and uncoupling protein 1 (UCP1) contents in brown adipose tissue, and leptin levels were negatively correlated with energy intake and resting metabolic rate. Furthermore, laboratory data showed these changes could be induced by short photoperiod alone. Taken together, our results indicate that Maximowicz’s voles can increase thermogenic capacity and energy intake to cope with cold stress. Serum leptin seems to be involved in the regulation of energy intake and changes in T3 level may be important for the variations in NST and/or UCP1. Short photoperiod can serve as a seasonal cue for the winter acclimatization of energy balance in free-living Maximowicz’s voles.  相似文献   

8.
Variations in environmental factors instigate significant changes in the physiology and behavior of animals, necessary for their survival. The present study investigated the hypothesis that ambient temperature is a cue capable of inducing changes in body mass, energy intake, and thermogenic capacity. Moreover, the current study determined the potential role of leptin in regulating adaptive thermogenesis in tree shrews (Tupaia belangeri). The tree shrew was chosen as the experimental animal as they inhabit a wide area of Asia and must acclimatize to the cold. Animals were subjected to either 5°C over 28 days to simulate cold acclimation, or maintained under the original climate of room temperature. At 28 days cold-acclimatized shrews had increased body mass by 9.41 g compared to controls. The increase in body mass was found primarily to be due to growth of the digestive organs, combined with significantly increased food intake. Under cold acclimation, uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT) was significantly elevated, while serum leptin concentration was significantly depressed below control levels. Serum leptin concentration was negatively correlated with body mass, energy intake, and thermogenic capacity during cold acclimation. In summary, these findings indicate that tree shrews adjust energy intake, thermogenic capacity, and body reserves in response to the cold, and further suggest that circulating leptin may act as a key signaling protein to regulate these adaptations.  相似文献   

9.
Environmental factors play an important role in the seasonal adaptation of body mass and thermogenesis in small, wild mammals. The purpose of the present study was to test the hypothesis that ambient temperature was a cue to trigger the seasonal adjustments in body mass, energy intake, uncoupling protein 1 (UCP1) in brown adipose tissue (BAT), and other biochemical characteristics of Eothenomys miletus during 49 days of cold exposure. Our data demonstrated that cold acclimation induced a remarkable decrease in body mass, a significant increase in energy intake and metabolic rate, and high expression of UCP1 in BAT of E. miletus. Biochemical characteristics of BAT and liver respiration were also increased following cold acclimation. These data suggest that E. miletus reduced the body mass and increased energy intake and expenditure under cold acclimation. Increased expression of UCP1 was potentially involved in the regulation of energy metabolism and thermogenic capacity following cold acclimation.  相似文献   

10.
During seasonal acclimation, Djungarian hamsters spontaneously exhibit a reduction in food intake, body mass and body fat stores, which is externally cued by shortening of day length in autumn and controlled by a sliding set-point. We investigated the function of the leptin adipostatic feedback system in the photoperiodic control of seasonal acclimation. In response to mouse recombinant leptin injections for 10 days, long day photoperiod (LD) and short day photoperiod (SD)-acclimated hamsters decreased food intake and body mass. The reduction of body mass was due to the depletion of body fat, as revealed by carcass composition analysis. In SD hamsters, leptin caused a larger reduction of body fat mass than observed under LD conditions, whereas the anorectic effect was similar in both photoperiods. The serum leptin concentration was 9.3 ± 1.2 ng/ml in LD-acclimated hamsters and decreased significantly to 4.2 ± 0.8 ng/ml and 2.1 ± 0.6 ng/ml in hamsters exposed to SD for 66 days and 116 days, respectively (P < 0.001). A strong positive correlation between total body fat mass and serum leptin concentration was found (r S=0.935, P < 0.0001, n=70). Despite the anorectic action of exogenous leptin, higher endogenous leptin levels in LD hamsters were paralleled by higher food intake in LD hamsters as compared to SD hamsters. This paradoxical finding further supports the increased leptin sensitivity in SD hamsters as judged from leptin treatment experiments. We tested the functional significance of leptin for the controlled down-regulation of food intake and body mass induced by short photoperiod. Food restriction for 10 days during the transition phase decreased body mass below the desired sliding set-point, which was recovered in control hamsters following ad libitum refeeding. Treatment with mouse recombinant leptin during ad libitum refeeding inhibited the recovery of body mass and blunted the increase of food intake observed in controls, indicating that the sliding set-point utilizes leptin as a signal for the adjustment of the appropriate body mass level. Accepted: 15 October 1999  相似文献   

11.
Photoperiod cues play important roles in the regulation of seasonal variations in body mass (BM) and energy balance for many small mammals. The present study was designed to examine the effects of photoperiod acclimation on BM, energy intake, and serum leptin levels in Brandt's voles (Microtus (Lasiopodomys) brandtii). After 4 weeks of acclimation to either long (LD; light:dark, 16:8) or short (SD; 8:16) photoperiod, SD voles had lower BM, body fat mass, and dry mass of liver and kidneys, but higher digestible energy intake in comparison to LD voles. SD voles also showed a lower level of serum leptin than did LD voles. Furthermore, the level of serum leptin was correlated positively with body fat mass and negatively with gross energy intake. Together, these data suggest that Brandt's voles employ a strategy of minimizing body growth, increasing energy intake, and mobilizing fat deposition in response to cues associated with short photoperiod. Furthermore, leptin seems to be involved in the regulation of BM and energy balance mediated by photoperiod.  相似文献   

12.
We investigate whether leptin treatment to lactating rats affects food intake, body weight and leptin serum concentration and its anorectic effect on their adult offspring. Lactating rats were divided into 2 groups: Lep-single injected with recombinant rat leptin (8 microg/100 g of body weight, daily for the last 3 consecutive days of lactation) and control group (C) that received the same volume of saline. After weaning all pups had free access to the control diet, their body weight and food intake were monitored at each 4 days until 180 days of age, when they were tested for its food intake and response to either leptin (0.5 mg/kg body wt, ip) or saline vehicle. The offspring of the leptin-treated dams gained more weight and had higher food intake from day 37 onward (p<0.05), higher amount of retroperitoneal white adipose tissue (RPWAT) (37%, p<0.05) and higher leptin serum concentration (40%, p<0.05) at 180 days of age compared to control group. The food intake at 2, 4, 6 and 24 h was unaffected after acute injection of leptin in these animals, suggesting resistance to the anorectic effect of leptin. The maternal leptin treatment during lactation makes their adult offspring more susceptible to overweight with resistance to the anorectic effect of leptin.  相似文献   

13.
A cluster of unique pathologies progressively develops during chronic total- or rapid eye movement-sleep deprivation (REM-SD) of rats. Two prominent and readily observed symptoms are hyperphagia and decline in body weight. For body weight to be lost despite a severalfold increase in food consumption suggests that SD elevates metabolism as the subject enters a state of negative energy balance. To test the hypothesis that mediation of this hypermetabolism involves increased gene expression of uncoupling protein-1 (UCP1), which dissipates the thermodynamic energy of the mitochondrial proton-motive force as heat instead of ATP formation in brown adipose tissue (BAT), we 1) established the time course and magnitude of change in metabolism by measuring oxygen consumption, 2) estimated change in UCP1 gene expression in BAT by RT-PCR and Western blot, and 3) assayed serum leptin because of its role in regulating energy balance and food intake. REM-SD of male Sprague-Dawley rats was enforced for 20 days with the platform (flowerpot) method, wherein muscle atonia during REM sleep causes contact with surrounding water and awakens it. By day 20, rats more than doubled food consumption while losing approximately 11% of body weight; metabolism rose to 166% of baseline with substantial increases in UCP1 mRNA and immunoreactive UCP1 over controls; serum leptin decreased and remained suppressed. The decline in leptin is consistent with the hyperphagic response, and we conclude that one of the mediators of elevated metabolism during prolonged REM-SD is increased gene expression of UCP1 in BAT.  相似文献   

14.
15.
Lactation is the most energetically demanding period in the female mammal's life. We measured maternal energy intake, uncoupling protein 1 (UCP1) content in brown adipose tissue (BAT), serum-leptin concentration, and litter growth in lactating Brandt's voles (Lasiopodomys brandtii) with different litter sizes. Litter mass was positively related to litter size but there was no difference in pup mass at birth. Maternal gross energy intake at peak lactation was positively correlated with litter size and litter mass. Maternal resting metabolic rate (RMR) was positively correlated with litter mass, but not with litter size. No significant differences were detected in body-fat mass, serum-leptin concentration, or UCP1 in lactating voles with different litter sizes. Serum-leptin concentration was negatively correlated with energy intake during lactation. Our data did not support the hypothesis that there is a trade-off in energy allocation between maternal maintenance and offspring growth in lactating Brandt's voles, but support the idea that if the mothers with ten pups should have less energy available for their maintenance than mothers raising fewer pups. Also, leptin is probably not the only factor that induces the high energy intake in mothers with large litter sizes, although it was involved in the regulation of energy intake during lactation.  相似文献   

16.
Environmental factors play an important role in the seasonal adaptation of body mass and thermogenesis in wild small mammals. In this study, we performed a factorial experiment (temperature x photoperiod) in which Brandt's voles and Mongolian gerbils were acclimated to different photoperiods (long photoperiod, 16L : 8D; short photoperiod, 8L : 16D) and temperatures (warm, 23 degrees C; cold, 5 degrees C) to test the hypothesis that photoperiod, temperature, or both together can trigger seasonal changes in serum leptin level, body mass, thermogenesis, and energy intake. Our data demonstrate that Brandt's voles showed a remarkable decrease in body mass in both the cold and a short photoperiod. However, no significant changes in body mass were found for gerbils exposed to similar conditions. The short photoperiod induced a decrease in serum leptin levels for both voles and gerbils that might contribute to an increase in energy intake. Furthermore, the short photoperiod induced an increase of uncoupling protein 1 (UCP1) content for both voles and gerbils, and cold can further enhance the increase in voles. No interactions between photoperiod and temperature were detected for the two species. Brandt's voles can decrease their body mass through changes in energy intake and expenditure, while Mongolian gerbils can keep body mass relatively stable by balancing energy metabolism under winterlike conditions. Leptin was potentially involved in the regulation of body mass and thermogenic capacity for the two species.  相似文献   

17.
光周期对布氏田鼠和长爪沙鼠体重和能量代谢的影响   总被引:13,自引:6,他引:7  
本文测定了光周期对雄性布氏田鼠和长爪沙鼠的体重、基础代谢率和能量代谢的影响。动物从长光照(16L∶8D , LD) 转入短光照(8L∶16D , SD) 条件下驯化6 周(田鼠) 和7 周(沙鼠) 。结果显示: (1) 无论在LD还是SD 条件下, 两种动物的体重都趋于增加, 但反应程度不同也具有种间差异性。两种动物的体重对光周期的反应有时段性, 约14 d 前两种动物的体重增加迅速, 而后增加缓慢, 3 周左右趋于稳定。短光照条件下布氏田鼠和长爪沙鼠的体重分别增长了37 %和11 % , 均低于长光照组(分别为47 %和25 %) , 说明短光照条件下布氏田鼠和长爪沙鼠的体重增长较长光照缓慢; (2) 光照对两种动物的摄入能、消化能和可代谢能均没有显著影响,摄入能与体重的增长无关; (3) 光照对两种动物的基础代谢率无显著影响。这些结果表明: 布氏田鼠和长爪沙鼠在自然环境中, 可能以光周期作为一种信号, 当环境温度降低、食物质量变劣时, 采取降低体重以减少绝对能量需求的策略而适应环境。  相似文献   

18.
Environmental cues play important roles in the regulation of an animal's physiology and behavior. The purpose of the present study was to test the hypothesis that ambient temperature is a cue to induce adjustments in body mass, energy intake and thermogenic capacity, associated with changes in serum leptin levels in tree shrews (Tupaia belangeri). We found that tree shrews increased basal metabolic rate (BMR), energy intake and subsequently showed a significant decrease in body mass after being returned to warm ambient temperature. Uncoupling protein 1 (UCP1) content in brown adipose tissue (BAT) increased during cold acclimation and reversed after rewarming. The trend of energy intake increased during cold acclimation and decreased after rewarming; the trend of energy intake during cold acclimation was contrary to the trend of energy intake during rewarming. Further, serum leptin levels were negatively correlated with body mass. Together, these data supported our hypothesis that ambient temperature was a cue to induce changes in body mass and metabolic capacity. Serum leptin, as a starvation signal in the cold and satiety signal in rewarming, was involved in the processes of thermogenesis and body mass regulation in tree shrews.  相似文献   

19.
Objective: The aim of this study was to determine the sex‐dependent differences in the response of key parameters involved in thermogenesis and control of body weight in brown adipose tissue (BAT) and white adipose tissue (WAT) in postcafeteria‐fed rats, a model of dietary obesity. Research Methods and Procedures: BAT and WAT were obtained from male and female control and postcafeteria‐fed Wistar rats. Postcafeteria‐fed rats were initially fed with cafeteria diet from day 10 of life until day 110 (cafeteria period) and with standard chow diet from then until day 180 of life (postcafeteria period). Body mass and energy intake were evaluated. Biometric parameters were analyzed in interscapular BAT (IBAT). Levels of uncoupling protein 1 (UCP1), α2‐adrenergic receptor (AR), and β3‐AR proteins and UCP1, UCP2, UCP3, β3‐AR, and leptin mRNAs, in IBAT or WAT, were studied by Western blot and Northern blot analyses, respectively. Results: Rats attained 59% (females) and 39% (males) increase in body weight at the end of the cafeteria period. During the postcafeteria period, the rats showed a loss of body weight, which was higher in females. Postcafeteria‐fed female rats also presented higher activation of thermogenic parameters in IBAT, including UCP1, UCP2, and UCP3 mRNAs. Female control rats showed lower levels of both α2 and β3‐ARs in BAT compared with male rats, but these levels in postcafeteria‐fed female and male rats were the same, because males tended to down‐regulate them. Levels of leptin mRNA in response to the postcafeteria state depended on gender and the specific WAT depot studied. Discussion: It is suggested that in postcafeteria‐fed female rats, BAT thermogenic capacity becomes more efficiently activated than in males. Female rats also showed a bigger weight loss. The parallel regulation of the levels of UCP2 and UCP3 mRNAs, with respect to UCP1 mRNA, with higher activation in female postcafeteria‐fed rats, suggests a possible role of both UCP2 and UCP3 in the regulation of energy expenditure and in the control of body weight. The distinct responses to overweight of α2 and β3‐ARs—which were sex dependent—and leptin mRNA—which depended on both sex and WAT depot—also support the different response of thermogenesis‐related parameters between overweight males and females.  相似文献   

20.
In most mammals, maternal body mass and fat mass increase during pregnancy due to hyperphagia. These physiological changes provide the fetus with energy and nutrients and prepare the mother for the high energetic demands of lactation. In the present study, metabolic changes in response to cold and pregnancy were examined in female Brandt's voles (Lasiopodomys brandtii). At 23±1 °C, the voles increased body mass and deposited body fat during pregnancy. However, at 5±1 °C pregnant voles did not deposit body fat even though energy intake increased above the level in the warm. Serum leptin concentration increased during pregnancy and was not influenced by cold exposure. Thermogenic capacity, as indicated by uncoupling protein 1 (UCP1) content in brown adipose tissue (BAT), increased in cold-exposed pregnant voles. The number and mass of fetuses were not affected by cold exposure. Our data may indicate the importance of an increased serum leptin concentration for a successful outcome of the pregnancy and also the independence of leptin secretion from body fat in pregnant voles. It also implies the need to develop central leptin resistance with respect to control of energy balance for pregnant voles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号