首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cancer is a heritable disorder of somatic cells. Environment and heredity both contribute to the origin of human cancer. The Eker (Tsc 2 gene mutant) rat model of hereditary renal carcinoma (RC) is an example of a Mendelian dominantly inherited predisposition to a specific cancer in an experimental animal. To the best of our knowledge, this was the first isolation of a Mendelian dominantly predisposing cancer gene in a naturally occurring animal model. Carcinogenesis looks like an opened Japanese fan, because initiated cells growing in several directions will develop into tumors having many gene abnormalities, and this is suggested by the edge of the fan. To search for such genetic alterations, we identified genes (Niban and Erc) that were expressed more abundantly in renal tumors than in the normal kidney.I will review this unique model for the study of multistep renal carcinogenesis and discuss cancer prevention and delay of carcinogenesis.  相似文献   

2.
Sen B  Wolf DC  Hester SD 《Mutation research》2004,549(1-2):213-224
Hereditary renal cell carcinoma (RCC) in Eker rats results from an inherited insertional mutation in the Tsc2 tumor suppressor gene and provides a valuable experimental model to characterize the function of the Tsc2 gene product, tuberin in vivo. The Tsc2 mutation predisposes the Eker rat to develop renal tumors at an early age. The exact mechanism of Tsc2 mediated tumor suppression is not known, however, there is evidence that it is most likely mediated by changes in cell cycle regulation via the PI3K/Akt pathway. The present study was designed to identify if gene expression was different in Tsc2 heterozygous mutant rat kidney compared to wild-type and if any of those differences are associated with tumorigenesis. cDNA microarray analysis of the untreated Tsc2 (+/-) mutant Long Evans (Eker) rat was compared to the Tsc2 (+/+) wild-type Long Evans rat to search for patterns that might be indicative of the intrinsic role of Tsc2. Of 4395 genes queried, 3.2% were significantly altered in kidneys from heterozygous mutant rats, of which 110 (76%) were up-regulated and 34 (24%) were down-regulated relative to the wild-type. The genes with altered expression belonged to the functional categories of cell cycle regulation, cell proliferation, cell adhesion and endocytosis. Many of these genes appear to be directly or indirectly regulated by the PI3K/Akt pathway. In addition to the PI3K/Akt pathway, other signaling pathways were also differentially expressed in Tsc2 mutant Eker rat kidneys compared to wild-type rats. The gene expression profiles of the Tsc2 heterozygous mutant and wild-type animals highlights new pathways for investigation that may be associated with the tumorigenic activity of tuberin loss and correlate with the enhanced susceptibility of the Tsc2 mutant animal's tendency to develop renal cell carcinoma.  相似文献   

3.
4.
The Eker rat hereditary renal carcinoma (RC) is an excellent example of a Mendelian dominant predisposition to a specific cancer in an experimental animal. We recently reported that a germline insertion in the rat homologue of the human tuberous sclerosis gene (TSC2) gives rise to the dominantly inherited cancer in the Eker rat model. We now describe the entire cDNA (5375 bp without exons 25 and 31) and genomic structure of the rat Tsc2 gene. The deduced amino acid sequence (1743 amino acids) shows 92% identity to the human counterpart. Surprisingly, there are a great many (> or = 41) coding exons with small sized introns spanning only approximately 35 kb of genomic DNA. Two alternative splicing events [involving exons 25 (129 bp) and 31 (69 bp)] make for a complex diversity of the Tsc2 product. The present determination of the Tsc2 gene and establishment of strong conservation between the rat and man provide clues for assessing unknown gene functions apart from that already predicted from the GTPase activating proteins (GAP3) homologous domain and for future analysis of intragenic mutations in tumors using methods such as PCR-SSCP and for insights into diverse phenotypes between species.  相似文献   

5.
The Eker rat is an animal model of renal carcinogenesis and carries a transposon insertion in the Tsc2 (tuberous sclerosis-2) gene. We previously generated transgenic Eker rats and identified coding sequences in the Tsc2 gene that are responsible for suppression of renal carcinogenesis in Eker rats. Tsc2-RGH, a transgene that expresses the carboxy terminal region (amino acids 1425-1755) of the Tsc2 product (tuberin), partially suppressed renal carcinogenesis. However, Tsc2-DRG, which expresses a mutant tuberin lacking the carboxy-terminal region (Delta aa 1425-1755), did not suppress renal carcinogenesis. Here, we found that introduction of both Tsc2-RGH and Tsc2-DRG in Eker rats completely suppressed renal carcinogenesis and rescued homozygous (Tsc2(Ek/Ek)) mutants from embryonic lethality in a complementary manner. Co-introduction of Tsc2-RGH and Tsc2-DRG, but not introduction of either alone, efficiently suppressed phosphorylation of p70 S6K. Thus, the functional domains of N-terminal hamartin binding and C-terminal tumor suppression in tuberin can separate in vivo.  相似文献   

6.
Hereditary renal carcinoma in the Eker rat is an excellent example of predisposition to a specific cancer being transmitted as a dominant trait. Recently, we identified a germline mutation of the tuberous sclerosis 2 (Tsc2) gene in the Eker rat. In the present study, we analyzed the upstream region of the Tsc2 gene. A novel leader exon (exon 1a) in a CpG island was found, and core promoter activity was identified in a 242-bp region of this island. Exon 1a and the promoter region were conserved in the human TSC2 gene. In addition, a rat homolog of a gene found upstream of TSC2 in human has been identified, indicating that the genomic organization around Tsc2/TSC2 is conserved between the two species. Characterization of the 5′ region of Tsc2 and TSC2 will facilitate studies of the regulation of the gene and its disregulation in tumorigenesis. Received: 1 February 1997 / Accepted: 4 April 1997  相似文献   

7.
Hereditary cancer was first described in the rat by Eker and Mossige in 1954 in Oslo. The Eker rat model of hereditary renal carcinoma (RC) was the first example of a Mendelian dominantly inherited predisposition to a specific cancer in an experimental animal, and has been contributing to the elucidation of renal carcinogenesis. Recently, we found a second hereditary RC model in the Sprague-Dawley (SD) rat, in Japan in 2000, which was named the Nihon rat. The Nihon rat is also an example of a Mendelian dominantly inherited predisposition for development of RCs like the Eker rat, which are predominantly of the clear cell type (this type represents approximately 75 % of human RCC), and develop from earlier preneoplastic lesions than the Eker rat. We performed a genetic linkage analysis of the Nihon rat using 113 backcross animals, and found that the Nihon mutation was tightly linked to genes, which are located on the distal part of rat chromosome 10. Finally, we identified a germline mutation in the Birt-Hogg-Dubé gene (Bhd) (rat chromosome 10, human chromosome 17p11.2) caused by the insertion of a single nucleotide in the Nihon rat gene sequence, resulting in a frame shift and producing a stop codon 26 amino acids downstream. Thus, the Nihon rat will contribute to understanding the BHD gene function and renal carcinogenesis.  相似文献   

8.
The PKD1 gene accounts for 85% of autosomal dominant polycystic kidney disease (ADPKD), the most common human genetic disorder. Rats with a germline inactivation of one allele of the Tsc2 tumor suppressor gene developed early onset severe bilateral polycystic kidney disease, with similarities to the human contiguous gene syndrome caused by germline codeletion of PKD1 and TSC2 genes. Polycystic rat renal cells retained two normal Pkd1 alleles but were null for Tsc2 and exhibited loss of lateral membrane-localized polycystin-1. In tuberin-deficient cells, intracellular trafficking of polycystin-1 was disrupted, resulting in sequestration of polycystin-1 within the Golgi and reexpression of Tsc2 restored correct polycystin-1 membrane localization. These data identify tuberin as a determinant of polycystin-1 functional localization and, potentially, ADPKD severity.  相似文献   

9.
10.
Rodent models of human diseases serve a vital role in translating bench observations to bedside therapies. In vivo manipulation of these animals allows us to explore the biologic significance of the underlying molecular and biochemical pathways. The study of human cancers has been highly enriched by the observations made from numerous transgenic mouse models. Long before the techniques of genetic engineering were discovered, Dr. Reidar Eker described one of the earliest examples of an autosomal dominant model of renal tumors in a unique strain of rats. They were used in the 1980's by Alfred Knudson to validate the "two-hit" hypothesis and to study the multi-step process of carcinogenesis. Following the identification of the Tsc2 germline mutation in the Eker rat, it became the first rodent model of tuberous sclerosis and has since been exploited in many areas of tumor biology as illustrated in the content of this issue. The focus of our review is to highlight the contribution of the Eker rat towards understanding the Tsc2 signaling pathways in tumorigenesis and evaluating potential therapeutics in the pre-clinical setting.  相似文献   

11.
R S Yeung  H Gu  M Lee  T A Dundon 《Genomics》2001,78(3):108-112
Prognosis and treatment of solid tumors are directly dependent on the stage of disease. For any type of cancer, tumor characteristics such as size, multiplicity, and metastatic potential are highly heterogeneous among patients. Our understanding of the genetic determinants of tumor burden is rudimentary. Here, rats carrying a germline mutation of the gene Tsc2 were found to develop variable size and number of renal tumors. We hypothesize that "modifier" genes unlinked to Tsc2 affect its expressivity. Using a backcross (BC) analysis between the two strains that showed the greatest difference in tumor size (Fischer344 and Brown Norway), we mapped a quantitative trait locus based on tumor volume to rat chromosome 3q, lying in the interval between D3Mit3 and D3Rat17, with a maximum lod score of 4.4. This locus, Mot1 (modifier of Tsc2 1), accounts for approximately 35% of the genetic variation in tumor size between the two strains. No significant difference in tumor multiplicity was noted between Brown Norway and Fischer344 rats. This suggests that Mot1 modulates the rate of disease progression and not tumor initiation. Candidate genes on rat chromosome 3 included Tsc1, whose product interacts biochemically with the TSC2 protein, but it was excluded on the basis of linkage analysis (LOD=0.01). Comparative genomics suggest that the Mot1 region is represented by human chromosomes 15q and 20pq. Our results provide the first evidence of a modifier gene affecting the Tsc2 pathway in the progression of renal tumorigenesis.  相似文献   

12.

Background

The genetic basis of susceptibility to renal tumorigenesis has not yet been established in mouse strains. Mouse lines derived by bidirectional phenotypic selection on the basis of their maximal (AIRmax) or minimal (AIRmin) acute inflammatory responsiveness differ widely in susceptibility to spontaneous and urethane-induced renal tumorigenesis. To map the functional loci modulating renal tumor susceptibility in these mice, we carried out a genome-wide genetic linkage study, using SNP arrays, in an (AIRmax x AIRmin)F2 intercross population treated with a single urethane dose at 1 week of age and phenotyped for renal tumors at 35 weeks of age.

Results

AIRmax mice did not develop renal tumors spontaneously nor in response to urethane, whereas in AIRmin mice renal tumors formed spontaneously (in 52% of animals) and after urethane induction (89%). The tumors had a papillary morphology and were positive for alpha-methylacyl-CoA racemase and negative for CD10. By analysis of 879 informative SNPs in 662 mice, we mapped a single quantitative trait locus modulating the incidence of renal tumors in the (AIRmax x AIRmin)F2 intercross population. This locus, which we named Renal tumor modifier QTL 1 (Rtm1), mapped to chromosome 17 at 23.4 Mb (LOD score = 15.8), with SNPs rs3696835 and rs3719497 flanking the LOD score peak. The A allele of rs3719497 from AIRmin mice was associated with a 2.5-fold increased odds ratio for renal tumor development. The LOD score peak included the Tuberous sclerosis 2 (Tsc2) gene which has already been implicated in kidney disease: loss of function by germline retroviral insertion is associated with spontaneous renal tumorigenesis in the Eker rat, and heterozygous-null Tsc2(+/-) mice develop renal cystadenomas.

Conclusions

We mapped Rtm1 as a single major locus modulating renal tumorigenesis in a murine intercross population. Thus, the AIR mouse lines can be considered a new genetic model for studying the role of germline and somatic molecular alterations in kidney neoplastic disease.  相似文献   

13.
Denver, Tokyo, and Salt Lake City investigators recently published different complimentary deoxyribonucleic acid (cDNA) sequences for human liver xanthine dehydrogenase/xanthine oxidase (XD/XO). The gene encoding the Denver cDNA was subsequently linked to juvenile familial amyotrophic lateral sclerosis (JFALS) at chromosome 2q33 and has been proposed as the ALS2 locus. The present investigation was undertaken to elucidate the differences between the three cDNA sequences, and we provide evidence that the Denver cDNA encodes aldehyde oxidase (AO): first, the Denver cDNA sequence diverged significantly from the Tokyo and Salt Lake City cDNA sequences which were very similar; second, the deduced protein sequence from the Denver cDNA was very similar to the amino acid sequence of purified rabbit liver AO protein; third, the deduced Denver protein sequence was 76% identical to the encoded 101 amino acid long peptides from partial cDNAs for rabbit and rat AO and 81.7% identical to 300 amino acids from an incomplete cDNA encoding bovine AO; fourth, the Denver gene was expressed in liver, kidney, lung, pancreas, prostate, testes, and ovary while the Tokyo XD gene was expressed predominantly in liver and small intestine; fifth, the Denver gene was previously mapped to chromosome 2q33 which is syntenic to the mouse AO locus on chromosome 1. Our results have revealed dramatic similarities in protein and DNA sequence in the human molybdenum hydroxylases, have uncovered unanticipated complexity in the human molybdenum hydroxylase genes, and advance the potential for AO derived oxygen radicals in JFALS and other human diseases.  相似文献   

14.
The murine t complex on chromosome 17 contains a number of homozygous lethal and semi-lethal mutations that disrupt development of the mouse embryo. We recently characterized an embryonic lethality in the rat that results from a germ-line mutation in the tuberous sclerosis 2 (Tsc-2) tumour suppressor gene (the Eker mutation). Remarkably, mouse embryos homozygous for tw8 mutation display cranial defects reminiscent of those observed in rat embryos homozygous for the Eker mutation. To determine whether the Tsc-2 gene, which is in the t complex, is mutated in tw8 or other t haplotypes, we characterized this gene in a series of t haplotype mice. Four Tsc-2 polymorphisms were identified: three in the coding region and one intronic that appeared to be common to all t haplotypes analysed. No evidence was found to argue that the Tsc-2 gene is altered in tw8 haplotype mice. However, in the tw5 haplotype we found a G to T mutation in Tsc-2 that was present only in this t haplotype. In contrast to other polymorphisms within the Tsc-2 coding region which did not result in amino acid changes in Tsc-2 gene product tuberin, this mutation substituted a phenylalanine for a conserved cysteine in tw5 tuberin. Within the t complex, the Tsc-2 gene and the putative tw5 locus appeared to map to different positions, complicating identification of Tsc-2 as a candidate for the tw5 locus and suggesting that the G to T mutation in the Tsc-2 gene may have arisen independently of the tw5 functional mutation.  相似文献   

15.
16.
17.
Tuberous sclerosis complex (TSC) is a multiorgan hamartomatous disease caused by loss of function mutations of either the TSC1 or TSC2 genes. Neurological symptoms of TSC predominate in younger patients, but renal pathologies are a serious aspect of the disease in older children and adults. To study TSC pathogenesis in the kidney, we inactivated the mouse Tsc1 gene in the distal convoluted tubules (DCT). At young ages, Tsc1 conditional knockout (CKO) mice have enlarged kidneys and mild cystogenesis with increased mammalian target of rapamycin complex (mTORC)1 but decreased mTORC2 signaling. Treatment with the mTORC1 inhibitor rapamycin reduces kidney size and cystogenesis. Rapamycin withdrawal led to massive cystogenesis involving both distal as well as proximal tubules. To assess the contribution of decreased mTORC2 signaling in kidney pathogenesis, we also generated Rictor CKO mice. These animals did not have any detectable kidney pathology. Finally, we examined primary cilia in the DCT. Cilia were longer in Tsc1 CKO mice, and rapamycin treatment returned cilia length to normal. Rictor CKO mice had normal cilia in the DCT. Overall, our findings suggest that loss of the Tsc1 gene in the DCT is sufficient for renal cystogenesis. This cytogenesis appears to be mTORC1 but not mTORC2 dependent. Intriguingly, the mechanism may be cell autonomous as well as non-cell autonomous and possibly involves the length and function of primary cilia.  相似文献   

18.
19.
Somatic mutations in the tuberous sclerosis complex-2 (TSC2) gene are associated with pulmonary lymphangioleiomyomatosis (LAM), a disorder characterized by benign lesions of smooth muscle and/or smooth muscle-like cells in the lung. However, the cellular mechanisms underlying LAM disease are largely unknown. Given that the TSC2 gene product tuberin is involved in the regulation of cell growth and proliferation, the present study was designed to investigate the potential roles of TSC2 in regulation of the cell cycle. We studied cell cycle profiles of pulmonary vascular smooth muscle cells (SMCs) derived from Eker rats (Tsc2(+/EK)), a genetic model carrying a germline insertional deletion in one copy of the Tsc2 gene, and the wild-type rats (Tsc2(+/+)), a noncarrier counterpart. We found that Tsc2(+/EK), but not Tsc2(+/+), SMCs displayed increases in cells with > or =4N DNA content (> or =4N cells) and in the bromodeoxyuridine (BrdU) incorporation of > or =4N cells. Centrosome number was also increased in Tsc2(+/EK) SMCs, but the mitotic index was comparable between Tsc2(+/+) and Tsc2(+/EK) SMCs. Furthermore, Tsc2(+/EK) SMCs showed elevated phosphorylation of p70S6K and increased expression of cell cycle regulatory proteins Cdk1, cyclin B, Cdk2, and cyclin E. Inhibition of the mammalian target of rapamycin (mTOR) pathway by rapamycin not only inhibited the phosphorylation of p70(S6K) and the expression of cell cycle regulatory proteins but also reduced accumulation of > or =4N cells and BrdU incorporation of >4N cells. Therefore, our results demonstrate that Tsc2(+/EK) SMCs are predisposed to undergo tetraploidization, involving activation of the mTOR pathway. These findings suggest an important role of Tsc2 in regulation of the cell cycle.  相似文献   

20.
Mutations in the human Tsc1 and Tsc2 genes predispose to tuberous sclerosis complex (TSC), a disorder characterized by the wide spread of benign tumors. Tsc1 and Tsc2 proteins form a complex and serve as a GTPase-activating protein (GAP) for Rheb, a GTPase regulating a downstream kinase, mTOR. The genome of Schizosaccharomyces pombe contains tsc1(+) and tsc2(+), homologs of human Tsc1 and Tsc2, respectively. In this study we analyzed the gene expression profile on a genomewide scale and found that deletion of either tsc1(+) or tsc2(+) affects gene induction upon nitrogen starvation. Three hours after nitrogen depletion genes encoding permeases and genes required for meiosis are less induced. Under the same condition, retrotransposons, G1-cyclin (pas1(+)), and inv1(+) are more induced. We also demonstrate that a mutation (cpp1-1) in a gene encoding a beta-subunit of a farnesyltransferase can suppress most of the phenotypes associated with deletion of tsc1(+) or tsc2(+). When a mutant of rhb1(+) (homolog of human Rheb), which bypasses the requirement of protein farnesylation, was expressed, the cpp1-1 mutation could no longer suppress, indicating that deficient farnesylation of Rhb1 contributes to the suppression. On the basis of these results, we discuss TSC pathology and possible improvement in chemotherapy for TSC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号