首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Polycomb repressive complex-2 (PRC2) is a histone methyltransferase required for epigenetic silencing during development and cancer. Among chromatin modifying factors shown to be recruited and regulated by long noncoding RNAs (lncRNAs), PRC2 is one of the most studied. Mammalian PRC2 binds thousands of RNAs in vivo, and it is becoming a model system for the recruitment of chromatin modifying factors by RNA. Yet, well-defined PRC2-binding motifs within target RNAs have been elusive. From the protein side, PRC2 RNA-binding subunits contain no known RNA-binding domains, complicating functional studies. Here we provide a critical review of existing models for the recruitment of PRC2 to chromatin by RNAs. This discussion may also serve researchers who are studying the recruitment of other chromatin modifiers by lncRNAs.  相似文献   

4.
5.
6.
7.
8.
Molecular mechanisms of long noncoding RNAs   总被引:6,自引:0,他引:6  
Wang KC  Chang HY 《Molecular cell》2011,43(6):904-914
Long noncoding RNAs (lncRNAs) are an important class of pervasive genes involved in a variety of biological functions. Here we discuss the emerging archetypes of molecular functions that lncRNAs execute-as signals, decoys, guides, and scaffolds. For each archetype, examples from several disparate biological contexts illustrate the commonality of the molecular mechanisms, and these mechanistic views provide useful explanations and predictions of biological outcomes. These archetypes of lncRNA function may be a useful framework to consider how lncRNAs acquire properties as biological signal transducers and hint at their possible origins in evolution. As new lncRNAs are being discovered at a rapid pace, the molecular mechanisms of lncRNAs are likely to be enriched and diversified.  相似文献   

9.
长非编码RNA     
人类基因组序列的约5%~10%被稳定转录,蛋白质编码基因仅约占1%,其余4%~9%的序列虽能转录,但转录物功能尚不明确。尽管如此,已确证在非蛋白质编码转录物中,含有具备调节功能的非编码RNA(noncoding RNA,ncRNA)。与具有调节功能的短链非编码RNA[如微RNA(microRNA)、小干扰RNA(siRNA),、Piwi-RNA]相比,长非编码RNA(long noncoding RNA,lncRNA)在数量上占大多数。lncRNA通过多种方式产生,以多种途径调节靶基因表达,参与调控生物体生长、发育、衰老、死亡等过程;lncRNA功能异常往往导致疾病发生。本文综述了lncRNA的起源、分类、作用分子机制及lncRNA异常与疾病的相关性等内容,旨在充分了解这一重要新型调控分子。  相似文献   

10.
Eukaryotic genomes are packaged into chromatin, where diverse histone modifications can demarcate chromatin domains that facilitate or block gene expression. While silent chromatin has been associated with long noncoding RNAs (lncRNAs) for some time, new studies suggest that noncoding RNAs also modulate the active chromatin state. Divergent, antisense, and enhancer-like intergenic noncoding RNAs can either activate or repress gene expression by altering histone H3 lysine 4 methylation. An emerging class of enhancer-like lncRNAs may link chromosome structure to chromatin state and establish active chromatin domains. The confluence of several new technologies promises to rapidly expand this fascinating topic of investigation.  相似文献   

11.
12.
13.
Cellular signaling pathways play a very important role in almost all molecular processes in the cell, and are generally composed of a complex set of cascades in which enzymes and proteins play a key role. These signaling pathways include different types of cellular signaling classified based on their receptors and effector proteins such as enzyme-linked receptors, cytokine receptors, and G-protein-coupled receptors each of which is subdivided into different classes. Signaling pathways are tightly controlled by different mechanisms mostly thorough inhibiting/activating their receptors or effector proteins. In the last two decades, our knowledge of molecular biology has changed dramatically and today we know that more than 85% of the human genome expresses noncoding RNAs most of which are crucial in the cellular and molecular mechanisms of cells. One of these noncoding RNAs are long noncoding RNAs (lncRNA) containing more than 200 nucleotides. LncRNAs participate in the progression of cancer growth through several mechanism including signaling pathways. In this review, we summarize some of the most important of lncRNAs and their effect on important signaling pathways.  相似文献   

14.
Regulation of gene expression by trans-encoded antisense RNAs   总被引:5,自引:2,他引:3  
Members of a class of antisense RNAs are encoded by genes that are located at loci other than those of their target genes. Three examples of antisense RNA genes are discussed here. micF is found in Escherichia coli and other bacteria and functions to control outer membrane protein F levels in response to environmental stimuli. dicF is also found in E. coli and is involved in the regulation of cell division, lin-4 is found in the nematode Caenorhabditis elegans and functions during larval development. Nucleotide sequences of at least two of these genes appear to be phylogenetically conserved. The trans-encoded antisense RNAs are small RNAs which display only partial complementarity to their target RNAs. Models for RNA/RNA interactions have been proposed. It is possible that currently known unlinked antisense RNA genes are part of a larger class of heretofore undiscovered regulatory RNA genes. Possible ways of detecting other unlinked antisense RNA genes are discussed.  相似文献   

15.
16.
Long noncoding RNAs (lncRNAs) such as Xist, Air, and Kcnq1ot1 are required for epigenetic silencing of multiple genes in cis within large chromosomal domains, including distant genes located hundreds of kilobase pairs away. Recent evidence suggests that all three of these lncRNAs are functional and that they silence gene expression, in part, through an intimate interaction with chromatin. Here we provide an overview of lncRNA-dependent gene silencing, focusing on recent findings for the Air and Kcnq1ot1 lncRNAs. We review molecular evidence indicating that these lncRNAs interact with chromatin and correlate their presence with specific histone modifications associated with gene silencing. A general model for a lncRNA-dependent gene-silencing mechanism is presented based on the apparent ability of lncRNAs to recruit histone-modifying activities to chromatin. However, alternate mechanisms may be required to explain the silencing of some lncRNA-dependent genes. Finally, we discuss unanswered questions and future perspectives associated with these enigmatic lncRNA molecules.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号