共查询到20条相似文献,搜索用时 0 毫秒
1.
Zhiheng Xu Anna C. Maroney Pawel Dobrzanski Nickolay V. Kukekov Lloyd A. Greene 《Molecular and cellular biology》2001,21(14):4713-4724
Neuronal apoptotic death induced by nerve growth factor (NGF) deprivation is reported to be in part mediated through a pathway that includes Rac1 and Cdc42, mitogen-activated protein kinase kinases 4 and 7 (MKK4 and -7), c-Jun N-terminal kinases (JNKs), and c-Jun. However, additional components of the pathway remain to be defined. We show here that members of the mixed-lineage kinase (MLK) family (including MLK1, MLK2, MLK3, and dual leucine zipper kinase [DLK]) are expressed in neuronal cells and are likely to act between Rac1/Cdc42 and MKK4 and -7 in death signaling. Overexpression of MLKs effectively induces apoptotic death of cultured neuronal PC12 cells and sympathetic neurons, while expression of dominant-negative forms of MLKs suppresses death evoked by NGF deprivation or expression of activated forms of Rac1 and Cdc42. CEP-1347 (KT7515), which blocks neuronal death caused by NGF deprivation and a variety of additional apoptotic stimuli and which selectively inhibits the activities of MLKs, effectively protects neuronal PC12 cells from death induced by overexpression of MLK family members. In addition, NGF deprivation or UV irradiation leads to an increase in both level and phosphorylation of endogenous DLK. These observations support a role for MLKs in the neuronal death mechanism. With respect to ordering the death pathway, dominant-negative forms of MKK4 and -7 and c-Jun are protective against death induced by MLK overexpression, placing MLKs upstream of these kinases. Additional findings place the MLKs upstream of mitochondrial cytochrome c release and caspase activation. 相似文献
2.
Milano A Montesano Gesualdi N Teperino R Esposito F Cocozza S Ungaro P 《Cellular and molecular neurobiology》2005,25(8):1245-1254
1.Hereditary spastic paraplegia (HSP) is a genetically heterogeneous group of neurodegenerative disorders affecting 1 in 10,000 individuals. The present study was aimed to elucidate the role played by reactive oxygen species (ROS) in the pathogenesis of this disease. 2. To address this question we used 7-11 passaged fibroblasts from HSP patients to measure the extent of DNA damage induced by H2O2 treatment and to evaluate the JNK phosphorylation level after hydrogen peroxide and serum stimuli. 3. The present study demonstrates that HSP cells compared to controls are more sensitive to DNA damages induced by H2O2 treatment, and that JNK phosphorylation levels are increased in HSP fibroblasts compared to controls after hydrogen peroxide and serum stimuli. These results suggest a ROS-mediated pathogenetic mechanism for this disease. 相似文献
3.
Caroline Morel Claire L. Standen Dae Young Jung Susan Gray Helena Ong Richard A. Flavell Jason K. Kim Roger J. Davis 《Molecular and cellular biology》2010,30(19):4616-4625
The c-Jun NH2-terminal kinase (JNK) interacting protein 1 (JIP1) has been proposed to act as a scaffold protein that mediates JNK activation. However, recent studies have implicated JIP1 in multiple biochemical processes. Physiological roles of JIP1 that are related to the JNK scaffold function of JIP1 are therefore unclear. To test the role of JIP1 in JNK activation, we created mice with a germ line point mutation in the Jip1 gene (Thr103 replaced with Ala) that selectively blocks JIP1-mediated JNK activation. These mutant mice exhibit a severe defect in JNK activation caused by feeding of a high-fat diet. The loss of JIP1-mediated JNK activation protected the mutant mice against obesity-induced insulin resistance. We conclude that JIP1-mediated JNK activation plays a critical role in metabolic stress regulation of the JNK signaling pathway.Diet-induced obesity causes insulin resistance and metabolic syndrome, which can lead to β-cell dysfunction and type 2 diabetes (15). It is established that feeding mice a high-fat diet (HFD) causes activation of c-Jun NH2-terminal kinase 1 (JNK1) (10). Moreover, Jnk1−/− mice are protected against the effects of HFD-induced insulin resistance (10). Together, these observations indicate that JNK1 plays a critical role in the metabolic stress response. However, the mechanism that accounts for HFD-induced JNK1 activation is unclear. Recent studies have implicated the JIP1 scaffold protein in JNK1 activation caused by metabolic stress (23, 39).JIP1 can assemble a functional JNK activation module composed of a mitogen-activated protein kinase (MAPK) kinase kinase (a member of the mixed-lineage protein kinase [MLK] group), the MAPK kinase MKK7, and JNK (40, 42). This complex may be relevant to JNK activation caused by metabolic stress (23, 39). Indeed, MLK-deficient mice (14) and JIP1-deficient mice (13) exhibit defects in HFD-induced JNK activation and insulin resistance.The protection of Jip1−/− mice against the effects of being fed an HFD may be mediated by loss of the JNK scaffold function of JIP1. However, JIP1 has also been reported to mediate other biochemical processes that would also be disrupted in Jip1−/− mice. For example, JIP1 interacts with AKT and has been implicated in the mechanism of AKT activation (8, 17, 18, 34). Moreover, JIP1 interacts with members of the Src and Abl tyrosine kinase families (4, 16, 24), the lipid phosphatase SHIP2 (44), the MAPK phosphatase MKP7 (43), β-amyloid precursor protein (20, 31), the small GTPase regulatory proteins Ras-GRF1, p190-RhoGEF, RalGDS, and Tiam1 (2, 8, 21), ankyrin G (35), molecular chaperones (35), and the low-density-lipoprotein-related receptors LRP1, LRP2, and LRP8 (7, 37). JIP1 also interacts with other scaffold proteins, including the insulin receptor substrate proteins IRS1 and IRS2 (35). Finally, JIP1 may act as an adapter protein for kinesin-mediated (11, 12, 16, 38, 42) and dynein-mediated (35) trafficking on microtubules. The JNK scaffold properties of JIP1 therefore represent only one of the possible biochemical functions of JIP1 that are disrupted in Jip1−/− mice.The purpose of this study was to test the role of JIP1 as a JNK scaffold protein in the response of mice to being fed an HFD. Our approach was to examine the effect of a point mutation that selectively prevents JIP1-induced JNK activation. It is established that phosphorylation of JIP1 on Thr103 is required for JIP1-mediated JNK activation by the MLK pathway (25). Consequently, the phosphorylation-defective Thr103Ala JIP1 protein does not activate JNK (25). Here we describe the analysis of mice with a point mutation in the Jip1 gene that replaces the JIP1 phosphorylation site Thr103 with Ala. We show that this mutation suppresses HFD-induced JNK activation and insulin resistance. These data demonstrate that JNK activation mediated by the JIP1 scaffold complex contributes to the response of mice to an HFD. 相似文献
4.
Neurotrophic Factors Prevent Ceramide-Induced Apoptosis Downstream of c-Jun N-Terminal Kinase Activation in PC12 Cells 总被引:1,自引:1,他引:1
Abstract: Neurotrophic factors prevent apoptosis of PC12 cells in serum-free medium. The present study determines whether neurotrophic factors can prevent ceramide-induced apoptosis in PC12 cells and investigates the role that c-Jun N-terminal kinase (JNK) activation may play in this system. Ceramide-induced apoptosis was inhibited by nerve growth factor, basic fibroblast growth factor, pituitary adenylyl cyclase-activating peptide, 4-(8-chlorophenylthio)cyclic AMP, and the caspase inhibitor benzyloxycarbonyl-Val-Ala- dl -Asp fluoromethyl ketone (zVAD-FMK). It was surprising that inhibition of extracellular signal-regulated kinase and/or phosphatidylinositol 3-kinase did not markedly block the protective effects exerted by neurotrophic factors against ceramide-induced apoptosis, suggesting that neurotrophic factors can promote survival independently of these signaling pathways. Treatment of PC12 cells with ceramide resulted in a time-dependent increase in JNK activity. However, neither neurotrophic factors nor zVAD-FMK attenuated ceramide-stimulated JNK activation. Further experiments indicated that ceramide-induced apoptosis in PC12 cells requires new protein synthesis, and that nerve growth factor and zVAD-FMK can prevent apoptosis after JNK activity has been detected. These results indicate that ceramide-induced JNK activation is an early event and may be required for the expression of essential components of the apoptotic machinery. It is anticipated that neurotrophic factors inhibit ceramide-induced apoptosis by affecting signaling events downstream of JNK activation. 相似文献
5.
6.
Serum glucocorticoid kinase 1 (SGK1) has been shown to be protective in models of Parkinson''s disease, but the details by which it confers benefit is unknown. The current study was designed to investigate the details by which SGK1 confers neuroprotection. To do this we employed a cellular neurodegeneration model to investigate c-Jun N-terminal kinase (JNK) signaling and endoplasmic reticulum (ER) stress induced by 6-hydroxydopamine. SGK1-expressing adenovirus was created and used to overexpress SGK1 in SH-SY5Y cells, and dexamethasone was used to increase endogenous expression of SGK1. Oxidative stress, mitochondrial dysfunction, and cell death were monitored to test the protective effect of SGK1. To investigate the effect of SGK1 overexpression in vivo, SGK1-expressing adenovirus was injected into the striatum of mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and protection of dopaminergic neurons was quantitatively assessed by tyrosine hydroxylase immunohistochemistry. SGK1 overexpression was found to decrease reactive oxygen species generation, alleviate mitochondrial dysfunction, and rescue cell death in vitro and in vivo by inactivating mitogen-activated protein kinase kinase 4 (MKK4), JNK, and glycogen synthase kinase 3β (GSK3β) and thereby decreasing ER and oxidative stress. These results suggest that therapeutic strategies for activation of SGK1 may have the potential to be neuroprotective by deactivating the JNK and GSK3β pathways. 相似文献
7.
Kota Fujiki Tomoaki Mizuno Naoki Hisamoto Kunihiro Matsumoto 《Molecular and cellular biology》2010,30(4):995-1003
Mitogen-activated protein kinases (MAPKs) are integral to the mechanisms by which cells respond to physiological stimuli and a wide variety of environmental stresses. In Caenorhabditis elegans, the stress response is controlled by a c-Jun N-terminal kinase (JNK)-like MAPK signaling pathway, which is regulated by MLK-1 MAPK kinase kinase (MAPKKK), MEK-1 MAPKK, and KGB-1 JNK-like MAPK. In this study, we identify the max-2 gene encoding a C. elegans Ste20-related protein kinase as a component functioning upstream of the MLK-1-MEK-1-KGB-1 pathway. The max-2 loss-of-function mutation is defective in activation of KGB-1, resulting in hypersensitivity to heavy metals. Biochemical analysis reveals that MAX-2 activates MLK-1 through direct phosphorylation of a specific residue in the activation loop of the MLK-1 kinase domain. Our genetic data presented here also show that MIG-2 small GTPase functions upstream of MAX-2 in the KGB-1 pathway. These results suggest that MAX-2 and MIG-2 play a crucial role in mediating the heavy metal stress response regulated by the KGB-1 pathway.Mitogen-activated protein kinase (MAPK) signal transduction pathways are evolutionarily conserved in eukaryotic cells and transduce signals in response to a variety of extracellular stimuli. Each pathway is composed of three classes of protein kinases: MAPK, MAPK kinase (MAPKK), and MAPK kinase kinase (MAPKKK) (4, 14). MAPKKK phosphorylates and activates MAPKK, which in turn activates MAPK by dual phosphorylation of threonine and tyrosine residues within a Thr-Xxx-Tyr motif. Three subgroups of MAPKs have been identified: the extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 kinases (4, 14). JNK and p38 MAPKs function as key mediators of stress and immune signaling in mammals. The MKK4 and MKK7 MAPKKs have been shown to activate JNK, and the MKK3 and MKK6 MAPKKs serve as the major activators of p38 MAPK (4, 14). The specific MAPKKs are themselves phosphorylated and activated by specific MAPKKKs.Recent studies of Caenorhabditis elegans have revealed a high degree of conservation of JNK MAPK signaling components between C. elegans and mammals. The C. elegans JNK pathway, composed of an MKK7-type MAPKK JKK-1 and a JNK-type MAPK JNK-1, regulates coordinated movement via type D GABAergic (GABA stands for γ-aminobutyric acid) motor neurons (10) and has a role in synaptic vesicle transport (3). C. elegans also possesses another JNK-like MAPK pathway, composed of MLK-1 MAPKKK, MEK-1 MAPKK, and KGB-1 MAPK, which is homologous to the mammalian MLK-MKK7-JNK MAPK signaling cassette. KGB-1 has a novel activation site, consisting of Ser-Xxx-Tyr rather than Thr-Xxx-Tyr (19, 21). The KGB-1 pathway regulates the stress response to heavy metals (19). We have previously identified the vhp-1 and shc-1 genes as components functioning in the KGB-1 pathway. The vhp-1 and shc-1 genes encode a MAPK phosphatase (MKP) highly homologous to mammalian MKP-7 and a homolog of the mammalian Shc adaptor, respectively (19, 20). VHP-1 plays an important role in the heavy metal stress response in C. elegans by negatively regulating the KGB-1 pathway through dephosphorylation of KGB-1. SHC-1 mediates activation of the KGB-1 pathway by linking MEK-1 MAPKK with MLK-1 MAPKKK. However, it remains unknown what components function upstream of the MLK-1-MEK-1-KGB-1 pathway.In mammalian cells, the kinase activity of MLK family members is controlled by several different mechanisms, such as dimer formation, autoinhibition mediated by the Src homology 3 (SH3) domain of the MLKs itself, interaction with small GTPases, and phosphorylation by MAPKKK kinase (MAP4K) (6). In this study, we identified MAX-2, a member of the Ste20 group of protein kinases, as a potential component functioning upstream of MLK-1 MAPKKK in the KGB-1 pathway. MAX-2 physically associates with and phosphorylates MLK-1 at a Ser residue in the activation loop located between kinase subdomains VII and VIII of MLK-1, resulting in its activation. Additionally, we found that MIG-2, a member of the Rac family of small GTPases, functions as an upstream regulator of MAX-2. Our results thus identify the in vivo machinery regulating the JNK-mediated stress response pathway via a Ste20-related kinase and Rac-type GTPase. 相似文献
8.
C. Hugh Reynolds Michelle A. Utton Graham M. Gibb Alexandra Yates Brian H. Anderton 《Journal of neurochemistry》1997,68(4):1736-1744
Abstract: A proportion of the neuronal microtubule-associated protein (MAP) τ is highly phosphorylated in foetal and adult brain, whereas the majority of τ in the neurofibrillary tangles of Alzheimer's patients is hyperphosphorylated; many of the phosphorylation sites are serines or threonines followed by prolines. Several kinases phosphorylate τ at such sites in vitro. We have now shown that purified recombinant stress-activated protein kinase/c-Jun N-terminal kinase, a proline-directed kinase of the MAP kinase extended family, phosphorylates recombinant τ in vitro on threonine and serine residues. Western blots using antibodies to phosphorylation-dependent τ epitopes demonstrated that phosphorylation occurs in both of the main phosphorylated regions of τ protein. Unlike glycogen synthase kinase-3, the c-Jun N-terminal kinase readily phosphorylates Thr205 and Ser422 , which are more highly phosphorylated in Alzheimer τ than in foetal or adult τ. Glycogen synthase kinase-3 may preferentially phosphorylate the sites found physiologically, in foetal and to a smaller extent in adult τ, whereas stress-activated/c-Jun N-terminal kinase and/or other members of the extended MAP kinase family may be responsible for pathological proline-directed phosphorylations. Inflammatory processes in Alzheimer brain might therefore contribute directly to the pathological formation of the hyperphosphorylated τ found in neurofibrillary tangles. 相似文献
9.
10.
Interaction of Hematopoietic Progenitor Kinase 1 with Adapter Proteins Crk and CrkL Leads to Synergistic Activation of c-Jun N-Terminal Kinase 总被引:3,自引:0,他引:3
下载免费PDF全文

Pin Ling Zhengbin Yao Christian F. Meyer Xuhong Sunny Wang Wolf Oehrl Stephan M. Feller Tse-Hua Tan 《Molecular and cellular biology》1999,19(2):1359-1368
Hematopoietic progenitor kinase 1 (HPK1), a mammalian Ste20-related protein kinase, is an upstream activator of c-Jun N-terminal kinase (JNK). In order to further characterize the HPK1-mediated JNK signaling cascade, we searched for HPK1-interacting proteins that could regulate HPK1. We found that HPK1 interacted with Crk and CrkL adaptor proteins in vitro and in vivo and that the proline-rich motifs within HPK1 were involved in the differential interaction of HPK1 with the Crk proteins and Grb2. Crk and CrkL not only activated HPK1 but also synergized with HPK1 in the activation of JNK. The HPK1 mutant (HPK1-PR), which encodes the proline-rich region alone, blocked JNK activation by Crk and CrkL. Dominant-negative mutants of HPK1 downstream effectors, including MEKK1, TAK1, and SEK1, also inhibited Crk-induced JNK activation. These results suggest that the Crk proteins serve as upstream regulators of HPK1. We further observed that the HPK1 mutant HPK1-KD(M46), which encodes the kinase domain with a point mutation at lysine-46, and HPK1-PR blocked interleukin-2 (IL-2) induction in Jurkat T cells, suggesting that HPK1 signaling plays a critical role in IL-2 induction. Interestingly, HPK1 phosphorylated Crk and CrkL, mainly on serine and threonine residues in vitro. Taken together, our findings demonstrate the functional interaction of HPK1 with Crk and CrkL, reveal the downstream pathways of Crk- and CrkL-induced JNK activation, and highlight a potential role of HPK1 in T-cell activation. 相似文献
11.
There is an urgent need for novel treatment strategies for stressor related disorders, particularly depression and anxiety disorders. Indeed, existing drug treatments are only clinically successful in a subset of patients and relapse is common. This likely stems from the fact that stressor disorders are heterogeneous with multiple biological pathways being affected. To this end, the present investigation sought to assess in mice the contribution of the c-Jun N terminal kinase (JNK) pathway to the behavioral, hormonal and neurochemical effects of an acute stressor. Indeed, although JNK has been shown to modulate glucocorticoid receptors in vitro, virtually nothing is known of the role for JNK in affecting stressor induced pathology. We presently found that the JNK antagonist, SP600125, (but not the p38 antagonist, SB203580) increased plasma corticosterone levels under resting conditions and in the context of an acute stressor (wet bedding + restraint). SP600125 also reduced exploration in an open field arena, but prevented the stressor induced increase in open arm exploration in an elevated plus maze. Finally, SP600125 affected noradrenergic activity in the central amygdala and locus coruleus under resting condition, but prevented the noradrenergic effects within the paraventricular nucleus of the hypothalamus that were induced by the acute stressor exposure. These data suggest inhibiting endogenous JNK can have stressor-like corticoid, behavioral and central monoamine effects under basal conditions, but can actually reverse some behavioral and neurochemical effects of an acute stressor. Thus, endogenous JNK appears to affect stress relevant processes in a context-dependent manner. 相似文献
12.
Chenyang Jiang Yan Yuan Feifei Hu Qiwen Wang Kangbao Zhang Yi Wang Jianhong Gu Xuezhong Liu Jianchun Bian Zongping Liu 《Biological trace element research》2014,158(2):249-258
To investigate the role of mitogen-activated protein kinase (MAPK) and downstream events in cadmium (Cd)-induced neuronal apoptosis executed via the mitochondrial apoptotic pathway, this study used the PC-12 cell line as a neuronal model. The result showed that Cd significantly decreased cell viability and the Bcl-2?/?Bax ratio and increased the percentage of apoptotic cells, release of cytochrome c, caspase-3, and poly(ADP-ribose) polymerase cleavage, and nuclear translocation of apoptosis-inducing factor (AIF) and endonuclease G. In addition, exposure to Cd-induced phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK. Inhibition of ERK and JNK, but not p38 MAPK, partially protected the cells from Cd-induced apoptosis. ERK and JNK inhibition also blocked alteration of the Bcl-2?/?Bax ratio and cytochrome c release and suppressed caspase-3 and poly(ADP-ribose) polymerase cleavage and AIF and endonuclease G nuclear translocation. Taken together, these data suggest that the ERK- and JNK-mediated mitochondrial apoptotic pathway played an important role in Cd-induced PC12 cells apoptosis. 相似文献
13.
14.
Wnt5a plays an essential role in tissue development by regulating cell migration, though the molecular mechanisms are still not fully understood. Our study investigated the pathways involved in Wnt5a-dependent cell motility during the formation of dentin and pulp. Over-expression of Wnt5a promoted cell adhesion and formation of focal adhesion complexes (FACs) in human dental papilla cells (hDPCs), while inhibiting cell migration. Instead of activating the canonical Wnt signal pathway in hDPCs, Wnt5a stimulation induced activation of the JNK signal in a RhoA-dependent or independent manner. Inhibiting JNK abrogated Wnt5a-induced FACs formation but not cytoskeletal rearrangement. Both dominant negative RhoA (RhoA T19N) and constitutively active RhoA mutants (RhoA Q63L) blocked the Wnt5a-dependent changes in hDPCs adhesion, migration and cytoskeletal rearrangement here too, with the exception of the formation of FACs. Taken together, our study suggested that RhoA and JNK signaling have roles in mediating Wnt5a-dependent adhesion and migration in hDPCs, and the Wnt5a/JNK pathway acts both dependently and independently of the RhoA pathway. 相似文献
15.
UV Irradiation Induces the Murine Urokinase-Type Plasminogen Activator Gene via the c-Jun N-Terminal Kinase Signaling Pathway: Requirement of an AP1 Enhancer Element 总被引:7,自引:1,他引:7
下载免费PDF全文

Francesc Miralles Maribel Parra Carme Caelles Yoshikuni Nagamine Jordi Flez Pura Muoz-Cnoves 《Molecular and cellular biology》1998,18(8):4537-4547
16.
Ka Lung Cheung Jong Hun Lee Limin Shu Jung-Hwan Kim David B. Sacks Ah-Ng Tony Kong 《The Journal of biological chemistry》2013,288(31):22378-22386
Nrf2 plays a critical role in the regulation of cellular oxidative stress. MEK-ERK activation has been shown to be one of the major pathways resulting in the activation of Nrf2 and induction of Nrf2 downstream targets, including phase II detoxifying/antioxidant genes in response to oxidative stress and xenobiotics. In this study, IQGAP1 (IQ motif-containing GTPase-activating protein 1), a new Nrf2 interaction partner that we have published previously, was found to modulate MEK-ERK-mediated Nrf2 activation and induction of phase II detoxifying/antioxidant genes. Nrf2 binds directly to the IQ domain (amino acids 699–905) of IQGAP1. Knockdown of IQGAP1 significantly attenuated phenethyl isothiocyanate- or MEK-mediated activation of the MEK-ERK-Nrf2 pathway. Knockdown of IQGAP1 also attenuated MEK-mediated increased stability of Nrf2, which in turn was associated with a decrease in the nuclear translocation of Nrf2 and a decrease in the expression of phase II detoxifying/antioxidant genes. In the aggregate, these results suggest that IQGAP1 may play an important role in the MEK-ERK-Nrf2 signaling pathway. 相似文献
17.
Active glutathione S-transferase (GST) has been purified from needles of Norway spruce (Picea abies L. Karst.). Two isoforms of the enzyme which exhibit different physico-chemical and catalytic properties were separated by (NH4)2SO4 fractionation, affinity chromatography on epoxy-activated 4% cross-linked beaded agarose, using glutathione as the ligand, ion-exchange chromatography, and isoelectric focusing. The isozymes have pI values of 5.5 (GST I) and 4.3 (GST II). Both GST isozymes are homodimeric proteins with subunit sizes of 26 kD (GST I), and 23 kD (GST II). The kinetic properties of the enzymes are described and compared with other plants GSTs. Only GST II is able to conjugate the pesticides fluorodifen and alachlor. 相似文献
18.
Bo S. Kim Leonid Serebreni Jonathan Fallica Omar Hamdan Lan Wang Laura Johnston Todd Kolb Mahendra Damarla Rachel Damico Paul M. Hassoun 《PloS one》2015,10(4)
Background
Xanthine oxidoreductase (XOR) is involved in oxidative metabolism of purines and is a source of reactive oxygen species (ROS). As such, XOR has been implicated in oxidant-mediated injury in multiple cardiopulmonary diseases. XOR enzyme activity is regulated, in part, via a phosphorylation-dependent, post-translational mechanism, although the kinase(s) responsible for such hyperactivation are unknown.Methods and Results
Using an in silico approach, we identified a cyclin-dependent kinase 5 (CDK5) consensus motif adjacent to the XOR flavin adenine dinucleotide (FAD) binding domain. CDK5 is a proline-directed serine/threonine kinase historically linked to neural development and injury. We tested the hypothesis that CDK5 and its activators are mediators of hypoxia-induced hyperactivation of XOR in pulmonary microvascular endothelial cells (EC) and the intact murine lung. Using complementary molecular and pharmacologic approaches, we demonstrated that hypoxia significantly increased CDK5 activity in EC. This was coincident with increased expression of the CDK5 activators, cyclin-dependent kinase 5 activator 1 (CDK5r1 or p35/p25), and decreased expression of the CDK5 inhibitory peptide, p10. Expression of p35/p25 was necessary for XOR hyperactivation. Further, CDK5 physically associated with XOR and was necessary and sufficient for XOR phosphorylation and hyperactivation both in vitro and in vivo. XOR hyperactivation required the target threonine (T222) within the CDK5-consensus motif.Conclusions and Significance
These results indicate that p35/CDK5-mediated phosphorylation of T222 is required for hypoxia-induced XOR hyperactivation in the lung. Recognizing the contribution of XOR to oxidative injury in cardiopulmonary disease, these observations identify p35/CDK5 as novel regulators of XOR and potential modifiers of ROS-mediated injury. 相似文献19.
20.
Fariba Rezaee Samantha A. DeSando Andrei I. Ivanov Timothy J. Chapman Sara A. Knowlden Lisa A. Beck Steve N. Georas 《Journal of virology》2013,87(20):11088-11095
Understanding the regulation of airway epithelial barrier function is a new frontier in asthma and respiratory viral infections. Despite recent progress, little is known about how respiratory syncytial virus (RSV) acts at mucosal sites, and very little is known about its ability to influence airway epithelial barrier function. Here, we studied the effect of RSV infection on the airway epithelial barrier using model epithelia. 16HBE14o- bronchial epithelial cells were grown on Transwell inserts and infected with RSV strain A2. We analyzed (i) epithelial apical junction complex (AJC) function, measuring transepithelial electrical resistance (TEER) and permeability to fluorescein isothiocyanate (FITC)-conjugated dextran, and (ii) AJC structure using immunofluorescent staining. Cells were pretreated or not with protein kinase D (PKD) inhibitors. UV-irradiated RSV served as a negative control. RSV infection led to a significant reduction in TEER and increase in permeability. Additionally it caused disruption of the AJC and remodeling of the apical actin cytoskeleton. Pretreatment with two structurally unrelated PKD inhibitors markedly attenuated RSV-induced effects. RSV induced phosphorylation of the actin binding protein cortactin in a PKD-dependent manner. UV-inactivated RSV had no effect on AJC function or structure. Our results suggest that RSV-induced airway epithelial barrier disruption involves PKD-dependent actin cytoskeletal remodeling, possibly dependent on cortactin activation. Defining the mechanisms by which RSV disrupts epithelial structure and function should enhance our understanding of the association between respiratory viral infections, airway inflammation, and allergen sensitization. Impaired barrier function may open a potential new therapeutic target for RSV-mediated lung diseases. 相似文献