首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Chlorophyll b is one of the major light-harvesting pigments produced by land plants, green algae and several cyanobacterial species. It is synthesized from chlorophyll a by chlorophyllide a oxygenase (CAO), which in higher plants consists of three domains, namely, A, B, and C. We previously demonstrated that the C domain exhibits a catalytic function, whereas the A domain destabilizes the CAO protein in the presence of chlorophyll b, thus regulating the cellular level of CAO. In a previous study, we also presented genetic evidence demonstrating the involvement of Clp protease in the destabilization of CAO. In this study, in order to gain further insight into the regulatory mechanism of CAO, we screened for mutants defective in the control of CAO accumulation. Seeds from an Arabidopsis transgenic plant overexpressing a chimeric protein consisting of the A and B domains of CAO and green fluorescent protein (GFP) were mutagenized by ethyl methane sulfonate. We screened the progenies of the transgenic plants by laser-scanning confocal microscopy, and isolated a total of 66 mutants exhibiting significant GFP fluorescence. By immunoblotting analysis, we confirmed that these mutants accumulated the fusion protein of the N-terminal domains of CAO and GFP at a high level. We further divided these mutants into seven groups by distribution patterns of the fusion protein, and characterized them by pigment and immunoblotting analyses. Based on these analyses, we proposed a model to describe the regulatory mechanism of CAO.  相似文献   

2.
3.
Higher plants acclimate to various light environments by changing the antenna size of a light-harvesting photosystem. The antenna size of a photosystem is partly determined by the amount of chlorophyll b in the light-harvesting complexes. Chlorophyllide a oxygenase (CAO) converts chlorophyll a to chlorophyll b in a two-step oxygenation reaction. In our previous study, we demonstrated that the cellular level of the CAO protein controls accumulation of chlorophyll b. We found that the amino acids sequences of CAO in higher plants consist of three domains (A, B, and C domains). The C domain exhibits a catalytic function, and we demonstrated that the combination of the A and B domains regulates the cellular level of CAO. However, the individual function of each of A and B domain has not been determined yet. Therefore, in the present study we constructed a series of deleted CAO sequences that were fused with green fluorescent protein and overexpressed in a chlorophyll b-less mutant of Arabidopsis thaliana, ch1-1, to further dissect functions of A and B domains. Subsequent comparative analyses of the transgenic plants overexpressing B domain containing proteins and those lacking the B domain determined that there was no significant difference in CAO protein levels. These results indicate that the B domain is not involved in the regulation of the CAO protein levels. Taken together, we concluded that the A domain alone is involved in the regulatory mechanism of the CAO protein levels.  相似文献   

4.
Chl b is a major photosynthetic pigment of peripheral antenna complexes in chlorophytes and prochlorophytes. Chl b is synthesized by chlorophyllide a oxygenase (CAO), an enzyme that has been identified from higher plants, moss, green algae and two groups of prochlorophytes, Prochlorothrix and Prochloron. Based on these results, we previously proposed the hypothesis that all of the Chl b synthesis genes have a common origin. However, the CAO gene is not found in whole genome sequences of Prochlorococcus although a gene which is distantly related to CAO was reported. If Prochlorococcus employs a different enzyme, a Chl synthesis gene should have evolved several times on the different phylogenetic lineages of Prochlorococcus and other Chl b-containing organisms. To examine these hypotheses, we identified a Prochlorococcus Chl b synthesis gene by using a combination of bioinformatics and molecular genetics techniques. We first identified Prochlorococcus-specific genes by comparing the whole genome sequences of Prochlorococcus marinus MED4, MIT9313 and SS120 with Synechococcus sp. WH8102. Synechococcus is closely related to Prochlorococcus phylogenetically, but it does not contain a Chl b synthesis gene. By examining the sequences of Prochlorococcus-specific genes, we found a candidate for the Chl b synthesis gene and introduced it into Synechocystis sp. PCC6803. The transformant cells accumulated Chl b, indicating that the gene product catalyzes Chl b synthesis. In this study, we discuss the evolution of CAO based upon the molecular phylogenetic studies we performed.  相似文献   

5.
6.
The organization of pigment molecules in photosystems is strictly determined. The peripheral antennae have both chlorophyll a and b, but the core antennae consist of only chlorophyll a in green plants. Furthermore, according to the recent model obtained from the crystal structure of light-harvesting chlorophyll a/b-protein complexes II (LHCII), individual chlorophyll-binding sites are occupied by either chlorophyll a or chlorophyll b. In this study, we succeeded in altering these pigment organizations by introducing a prokaryotic chlorophyll b synthesis gene (chlorophyllide a oxygenase (CAO)) into Arabidopsis. In these transgenic plants (Prochlirothrix hollandica CAO plants), approximately 40% of chlorophyll a of the core antenna complexes was replaced by chlorophyll b in both photosystems. Chlorophyll a/b ratios of LHCII also decreased from 1.3 to 0.8 in PhCAO plants. Surprisingly, these transgenic plants were capable of photosynthetic growth similar to wild type under low light conditions. These results indicate that chlorophyll organizations are not solely determined by the binding affinities, but they are also controlled by CAO. These data also suggest that strict organizations of chlorophyll molecules are not essential for photosynthesis under low light conditions.  相似文献   

7.
Chlorophyll b is one of the major light-harvesting pigments in green plants and it is essential for optimal light harvesting. Chlorophyll b is synthesized from chlorophyll a by chlorophyllide a oxygenase (CAO) which consists of A, B and C domains. Previously, we demonstrated that the C domain alone has a catalytic function, while the A and B domains control the level of CAO protein in response to chlorophyll b accumulation. We hypothesized that the accumulation of chlorophyll b triggers the proteolytic degradation of CAO. In this study, in order to gain further insight into this regulatory mechanism we screened for mutants that have defects in the control of CAO accumulation. Seeds from a transgenic line of Arabidopsis which overexpressed a CAO-GFP fusion were mutagenized and their progenies were screened by laser-scanning confocal microscopy for mutants showing an elevated level of GFP fluorescence. One particular mutant (dca1) exhibited stronger GFP fluorescence and accumulated a GFP-CAO fusion protein at a higher level. Concomitantly, the chlorophyll a to b ratio decreased in this mutant. The mutation in the dca1 mutant was mapped to the ClpC1 gene, thereby indicating that a chloroplast Clp protease is involved in regulating chlorophyll b biosynthesis through the destabilization of CAO protein in response to the accumulation of chlorophyll b.  相似文献   

8.
The photoreduction of protochlorophyllide a to chlorophyllide a in intact 6-day-old seedlings of etiolated barley (Hordeum vulgare) exhibits a small initial phase, followed by an induction period of about 1 hour before a rapid phase of additional chlorophyll formation begins. Cycloheximide, an inhibitor of protein synthesis, has no effect on the initial phase of conversion of preformed protochlorophyllide, but it either abolishes or severely inhibits the subsequent phase of rapid chlorophyll synthesis within 45 minutes of its application to the seedlings. An analysis of the biphasic inhibition process suggests that the lifetime of the enzyme controlling protochlorophyllide synthesis (probably δ-amino-levulinic acid synthetase) is not longer than 10 minutes.  相似文献   

9.
We have isolated and structurally characterized genomic DNA and cDNA sequences encoding ribulose-1,5-bisphosphate carboxylase/oxygenase (Rbu-P2 carboxylase) activase from barley (Hordeum vulgare L.). Three Rbu-P2 carboxylase activase (Rca) polypeptides are encoded in the barley genome by two closely linked, tandemly oriented nuclear genes (RcaA and RcaB); cDNAs encoding each of the three Rbu-P2 carboxylase activase polypeptides were isolated from cDNA libraries of barley leaf mRNA. RcaA produces two mRNAs, which encode polypeptides of 42 and 46 kDa, by an alternative splicing mechanism identical to that previously reported for spinach and Arabidopsis Rca genes (Werneke, J.M., Chatfield, J.M., and Ogren, W. L. (1989) Plant Cell 1, 815-825). RcaB is transcribed to produce a single mRNA, which encodes a mature peptide of 42 kDa. Genomic Southern blots indicate that RcaA and RcaB represent the entire Rbu-P2 carboxylase activase gene family in barley. The genes share 80% nucleotide sequence identity, and the 42-kDa polypeptides encoded by RcaA and RcaB share 87% amino acid sequence identity. Coding regions of the two barley Rca genes are separated by 1 kilobase pair of flanking DNA. DNA sequence motifs similar to those thought to control light-regulated gene expression in other nuclear-encoded plastid polypeptide genes are found at the 5' end of both barley Rca genes. Probes specific to three mRNAs were used to determine the relative contribution each species makes to the total Rca mRNA pool.  相似文献   

10.
Plants acclimate to variations in light intensity by changing the antenna size of photosystems. This acclimation allows them to undergo efficient photosynthesis and creates a protective strategy to minimize photodamage. Chlorophyll b synthesis by chlorophyllide a oxygenase (CAO) is a key regulatory step in the control of antenna size. Recently, we found that higher plant CAOs consist of three domains (A, B, and C domains) and confirmed that the C domain possesses catalytic function. To investigate the function of the A domain, we fused various combinations of these three domains with green fluorescent protein (GFP) and introduced them into Arabidopsis thaliana. When a full-length CAO-GFP fusion protein was introduced into a chlorophyll b-less chlorina1-1 mutant, chlorophyll b accumulated to almost the same levels as in the chlorophyll b-containing Columbia wild type, but the CAO-GFP could not be detected by immunoblotting. By contrast, when a GFP-C domain fusion was introduced into chlorina1-1 or Columbia wild type, a large amount of GFP-C domain protein accumulated and the chlorophyll a/b ratio decreased drastically from 3.6 to 2.2 in Columbia wild type. When an A domain-GFP was introduced into Columbia wild type, A domain-GFP levels were very low. Conversely, a large amount of the protein accumulated when it was introduced into the chlorina1-1 mutant. These results indicate that the A domain may sense the presence of chlorophyll b and regulate the accumulation of CAO protein in the chloroplasts.  相似文献   

11.
The light-harvesting efficiency of a photosystem is thought to be largely dependent on its photosynthetic antenna size. It has been suggested that antenna size is controlled by the biosynthesis of chlorophyll b. To verify this hypothesis, we overexpressed the enzyme for chlorophyll b biosynthesis, chlorophyllide a oxygenase (CAO), in Arabidopsis thaliana by transforming the plant with cDNA for CAO under the control of the 35S cauliflower mosaic virus promoter. In the early de-etiolation phase, when the intrinsic CAO expression is very low, the chlorophyll a: b ratio was drastically decreased from 28 to 7.3, indicating that enhancement of chlorophyll b biosynthesis had been successfully achieved. We made the following observations in full-green rosette leaves of transgenic plants. (1) The chlorophyll a : b ratio was reduced from 2.85 to 2.65. (2) The ratio of the peripheral light-harvesting complexes (LHCII) to the core antenna complex (CPa) resolved with the green-gel system increased by 20%. (3) The ratio of the light-harvesting complex II apoproteins (LHCP) to 47-kDa chlorophyll a protein (CP47), which was estimated by the results of immunoblotting, increased by 40%. These results indicated that the antenna size increased by at least 10-20% in transgenic plants, suggesting that chlorophyll b biosynthesis controls antenna size. To the best of our knowledge, this is the first report on enlargement of the antenna size by genetic manipulations.  相似文献   

12.
Effects of water deficit on the chlorophyllide (Chlide) transformation pathway were studied in etiolated barley (Hordeum vulgare) leaves by analyzing absorption spectra and 77-K fluorescence spectra deconvoluted in components. Chlide transformations were examined in dehydrated leaves exposed to a 35-ms saturating flash triggering protochlorophyllide (Pchlide) and Chlide transformation processes. During the 90 min following the flash, we found that dehydration induced modifications of Chlide transformations, but no effect on Pchlide phototransformation into Chlide was observed. During this time, content of NADPH-Pchlide oxydoreductase in leaves did not change. Chlide transformation process in dehydrated leaves was characterized by the alteration of the Shibata shift process, by the appearance of a new Chlide species emitting at 692 nm, and by the favored formation of Chl(ide) A(668)F(676). The formation of Chl(ide) A(668)F(676), so-called "free Chlide," was probably induced by disaggregation of highly aggregated Chlide complexes. Here, we offer evidence for the alteration of photoactive Pchlide regeneration process, which may be caused by the desiccation-induced inhibition of Pchlide synthesis.  相似文献   

13.
14.
15.
Characterization of a cDNA encoding rat sterol carrier protein2   总被引:4,自引:0,他引:4  
Sterol carrier protein2 (SCP2) is a 13.2-kD protein that is thought to be involved in the intracellular transport of cholesterol. Using synthetic oligonucleotides based on the protein sequence of SCP2, a clone (SP43) was isolated from a rat liver cDNA library. The DNA sequence revealed that the cDNA could encode a polypeptide of 273 amino acids (28.9 kD) or 143 amino acids (15.3 kD) in which the carboxy-terminal 123 amino acids are identical to the SCP2 protein. RNA blot hybridization revealed that a variety of rat tissues contain a homologous RNA of a size similar to SP43 (approximately 1.5 kb). Levels of SCP2 mRNA increased in parallel with cytochrome P450scc mRNA in the immature gonadotropin-primed rat ovary. The isolation of a cDNA clone encoding SCP2 will facilitate studies on its role in cholesterol metabolism.  相似文献   

16.
Characterization of tumor-associated Chk2 mutations   总被引:11,自引:0,他引:11  
The integrity of the DNA damage response pathway is essential for prevention of neoplastic transformation. Several proteins involved in this pathway including p53, BRCA1, and ATM are frequently mutated in human cancer. Checkpoint kinase 2 (Chk2) is a DNA damage-activated protein kinase that lies downstream of ATM in this pathway. Recently, heterozygous germline mutations in Chk2 have been identified in a subset of patients with Li-Fraumeni syndrome, a highly penetrant familial cancer phenotype, suggesting that Chk2 is a tumor suppressor gene. In this study, we have reported the biochemical characterization of the four tumor-associated Chk2 mutants. Two of the reported Chk2 mutations identified in Li-Fraumeni syndrome result in loss of Chk2 kinase activity. Whereas one mutation within the Chk2 forkhead homology-associated (FHA) domain, R145W, retains some basal kinase activity, this mutant cannot be phosphorylated at an ATM-dependent phosphorylation site (Thr-68) and cannot be activated following gamma radiation. Wild-type Chk2 exists mainly in a protein complex of M(r) approximately 200,000 whereas the R145W mutant forms a larger, presumably inactive complex in the cell. The other FHA domain mutant, I157T, behaves as wild-type Chk2 in all the assays used here. Because the FHA domain is involved in protein-protein interactions, this mutation may affect associations of Chk2 with other proteins. Additionally, we have shown that Chk2 can also be inactivated by down-regulation of its expression in cancer cells. Thus, Chk2 may be inactivated by multiple mechanisms in the cell.  相似文献   

17.
Pulmonary cytochrome P450 2F3 (CYP2F3) catalyzes the dehydrogenation of the pneumotoxin 3-methylindole (3MI) to an electrophilic intermediate, 3-methyleneindolenine, which is responsible for the toxicity of the parent compound. Members of the CYP2F subfamily are the only enzymes known to exclusively dehydrogenate 3MI, without detectable formation of oxygenation products. Thus, CYP2F3 is an attractive model to study dehydrogenation mechanisms. The purpose of this study was to identify specific residues that could facilitate 3MI dehydrogenation. Both single and double mutations were constructed to study the molecular mechanisms that direct dehydrogenation. Double mutations in substrate recognition sites (SRS) 1 produced an inactive enzyme, while double mutants in SRS 4 did not alter 3MI metabolism. However, double mutations in SRS 5 and SRS 6 successfully introduced oxygenase activity to CYP2F3. Single mutations in SRS 5, SRS 6 and near SRS 2 also introduced 3MI oxygenase activity. Mutants S474H and D361T oxygenated 3MI but also increased dehydrogenation rates, while G214L, E215Q and S475I catalyzed 3MI oxygenation exclusively. A homology model of CYP2F3 was precisely consistent with specific dehydrogenation of 3MI via initial hydrogen atom abstraction from the methyl group. In addition, intramolecular kinetic deuterium isotope studies demonstrated an isotope effect ( K H/ K D) of 6.8. This relatively high intramolecular deuterium isotope effect confirmed the initial hydrogen abstraction step; a mutant (D361T) that retained the dehydrogenation reaction exhibited the same deuterium isotope effect. The results showed that a single alteration, such as a serine to isoleucine change at residue 475, dramatically switched catalytic preference from dehydrogenation to oxygenation.  相似文献   

18.
Characterization of a cloned cDNA encoding rabbit myelin P2 protein   总被引:2,自引:0,他引:2  
Myelin P2 is a 14,800-Da cytosolic protein found in rabbit sciatic nerves. It belongs to a family of fatty acid binding proteins and shows a 72% amino acid sequence similarity to aP2/422, the adipocyte lipid binding protein, a 58% sequence similarity to rat heart fatty acid binding protein, and a 40% sequence similarity to cellular retinoic acid binding protein. In order to isolate cDNA clones representing P2, a cDNA library was constructed from poly(A+) RNA isolated from sciatic nerves of 10-day-old rabbit pups. By use of a mixed synthetic oligonucleotide probe based on the rabbit P2 amino sequence, 12 cDNA clones were selected from about 25,000 recombinants. Four of these were further characterized. They contained an open reading frame, which when translated, agreed at 128 out of 131 residues with the known rabbit P2 amino acid sequence. These cDNAs recognize a 1.9-kilobase mRNA present in sciatic nerve, spinal cord, and brain, but not present in liver or heart. The levels of P2 mRNA parallel myelin formation in sciatic nerve and spinal cord with maximal amounts being detected at about 15 postnatal days. This initial study will allow characterization of the P2 gene and its regulation, as well as further studies into the role of P2, the first metabolically active myelin-specific protein to be characterized at the genetic level.  相似文献   

19.
The pigments of etiolated leaves of barley ( Hordeum vulgare L.) were analysed during dark periods after flash illumination, and the results were compared with in vivo spectroscopy of the leaves. Pretreatment of the leaves with kinetin slightly stimulated and pretreatment with NaF and anaerobiosis inhibited the esterification of chlorophyllide a (Chlide) at 10–40 min after the flash, whereas the rapid esterification within 30 s after the flash remained unchanged. Irrespective of pretreatment, the amount of esterified pigment was, at any time, identical with the amount of pigment that had shifted its absorption from 684 to 672 nm (Shibata shift). Cycloheximide (CHI) had only a small inhibitory effect on esterification, but drastically inhibited the hydrogenation of geranylgeraniol to phytol, bound to Chlide. The regeneration of long-wavelength protochlorophyllide a (Pchlide650) was stimulated by kinetin and inhibited by CHI and NaF. During the rapid phase (0–30 s after the flash), the esterification was faster than the regeneration of Pchlide650, and this, in turn, was faster than the formation of photoactive Pchlide. The kinetics changed after pretreatment with 5-aminolaevulinic acid: regeneration of Pchlide650 was the fastest reaction and the Shibata shift preceded the esterification of Chlide. The results are discussed as pigment exchange reactions at NADPH:protochlorophyllide oxidoreductase (POR; EC 1.6.99.1).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号