首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
EMF genes regulate Arabidopsis inflorescence development.   总被引:10,自引:1,他引:9       下载免费PDF全文
L Chen  J C Cheng  L Castle    Z R Sung 《The Plant cell》1997,9(11):2011-2024
Mutations in EMBRYONIC FLOWER (EMF) genes EMF1 and EMF2 abolish rosette development, and the mutants produce either a much reduced inflorescence or a transformed flower. These mutant characteristics suggest a repressive effect of EMF activities on reproductive development. To investigate the role of EMF genes in regulating reproductive development, we studied the relationship between EMF genes and the genes regulating inflorescence and flower development. We found that APETALA1 and AGAMOUS promoters were activated in germinating emf seedlings, suggesting that these genes may normally be suppressed in wild-type seedlings in which EMF activities are high. The phenotype of double mutants combining emf1-2 and apetala1, apetala2, leafy1, apetala1 cauliflower, and terminal flower1 showed that emf1-2 is epistatic in all cases, suggesting that EMF genes act downstream from these genes in mediating the inflorescence-to-flower transition. Constitutive expression of LEAFY in weak emf1, but not emf2, mutants increased the severity of the emf phenotype, indicating an inhibition of EMF activity by LEAFY, as was deduced from double mutant analysis. These results suggest that a mechanism involving a reciprocal negative regulation between the EMF genes and the floral genes regulates Arabidopsis inflorescence development.  相似文献   

3.
The seed maturation programme occurs only during the late phase of embryo development, and repression of the maturation genes is pivotal for seedling development. However, mechanisms that repress the expression of this programme in vegetative tissues are not well understood. A genetic screen was performed for mutants that express maturation genes in leaves. Here, it is shown that mutations affecting SDG8 (SET DOMAIN GROUP 8), a putative histone methyltransferase, cause ectopic expression of a subset of maturation genes in leaves. Further, to investigate the relationship between SDG8 and the Polycomb Group (PcG) proteins, which are known to repress many developmentally important genes including seed maturation genes, double mutants were made and formation of somatic embryos was observed on mutant seedlings with mutations in both SDG8 and EMF2 (EMBRYONIC FLOWER 2). Analysis of histone methylation status at the chromatin sites of a number of maturation loci revealed a synergistic effect of emf2 and sdg8 on the deposition of the active histone mark which is the trimethylation of Lys4 on histone 3 (H3K4me3). This is consistent with high expression of these genes and formation of somatic embryos in the emf2 sdg8 double mutants. Interestingly, a double mutant of sdg8 and vrn2 (vernalization2), a paralogue of EMF2, grew and developed normally to maturity. These observations demonstrate a functional cooperative interplay between SDG8 and an EMF2-containing PcG complex in maintaining vegetative cell identity by repressing seed genes to promote seedling development. The work also indicates the functional specificities of PcG complexes in Arabidopsis.  相似文献   

4.
In higher plants, developmental phase changes are regulated by a complex gene network. Loss-of-function mutations in the EMBRYONIC FLOWER genes (EMF1 and EMF2) cause Arabidopsis to flower directly, bypassing vegetative shoot growth. This phenotype suggests that the EMF genes play a major role in repression of the reproductive program. Positional cloning of EMF2 revealed that it encodes a zinc finger protein similar to FERTILIZATION-INDEPENDENT SEED2 and VERNALIZATION2 of Arabidopsis. These genes are characterized as structural homologs of Suppressor of zeste 12 [Su(z)12], a novel Polycomb group gene currently identified in Drosophila. In situ hybridization studies have demonstrated that EMF2 RNA is found in developing embryos, in both the vegetative and the reproductive shoot meristems, and in lateral organ primordia. Transgenic suppression of EMF2 produced a spectrum of early-flowering phenotypes, including emf2 mutant-like phenotype. This result confirms the role of EMF2 in phase transitions by repressing reproductive development.  相似文献   

5.
6.
In both Drosophila and vertebrates, spatially restricted expression of HOX genes is controlled by the Polycomb group (PcG) repressors. Here we characterize a novel Drosophila PcG gene, Suppressor of zeste 12 (Su(z)12). Su(z)12 mutants exhibit very strong homeotic transformations and Su(z)12 function is required throughout development to maintain the repressed state of HOX genes. Unlike most other PcG mutations, Su(z)12 mutations are strong suppressors of position-effect variegation (PEV), suggesting that Su(z)12 also functions in heterochromatin-mediated repression. Furthermore, Su(z)12 function is required for germ cell development. The Su(z)12 protein is highly conserved in vertebrates and is related to the Arabidopsis proteins EMF2, FIS2 and VRN2. Notably, EMF2 is a repressor of floral homeotic genes. These results suggest that at least some of the regulatory machinery that controls homeotic gene expression is conserved between animals and plants.  相似文献   

7.
To investigate the mechanisms regulating the initiation of floral development in Arabidopsis, a construct containing beta-glucuronidase (GUS) gene driven by APETALA1 promoter (AP1::GUS) was introduced into emf fwa and emf ft double mutants. GUS activity was strongly detected on shoot meristem of emf1-1 single mutants harboring AP1::GUS construct just 5 d after germination. By contrast, GUS activity was undetectable on emf1-1 fwa-1, emf1-1 ft-1, emf2-1 fwa-1, emf2-3 fwa-1 and emf2-3 ft-1 double mutants harboring AP1::GUS construct 10 d after germination. GUS activity was only weakly detected on the apical meristem of 20-day-old emf1-1 fwa-1 and emf2-1 fwa-1 seedlings. During this time, only sessile leaves were produced. Further analysis indicated that AP1 was strongly expressed in 10-day-old emf1-1 and emf2-1 single mutants. Its expression was significantly reduced in all emf1-1 or emf2-1 late-flowering double mutants tested. Similar to AP1, the expression of LEAFY (LFY) was also high in emf1-1 and emf2-1 single mutants and reduced in emf1-1 or emf2-1 late-flowering double mutants. Our results indicate that the precocious expression of AP1 and LFY is dependent not only on the low EMF and FWA activities but also on the expression of most of the late-flowering genes such as FT, FCA, FE, CO and GI. These data also reveal that most late-flowering genes may function downstream of EMF or in pathways distinct from EMF to activate genes specified floral meristem identity during shoot maturation in Arabidopsis.  相似文献   

8.
9.
In Drosophila, the spatially restricted expression of the homeotic genes is controlled by Polycomb group (PcG) repression. PcG proteins appear to form different complexes to repress this gene expression. Although the pleiohomeotic gene (pho) shares mutational phenotypes with other PcG mutations, which demonstrates that PHO binds directly with a Polycomb (Pc)-containing complex, the genetic interactions of pho with other PcG genes have not been examined in detail. Here we investigated whether pho interacts with Polycomblike (Pcl) and Polycomb (Pc) during embryonic and adult development using developmental and genetic approaches. Pcl and Pc strongly enhanced pho phenotypes in the legs and tergite of the adult fly. Embryonic cuticle transformation was also greatly enhanced in Pcl; pho or Pc; pho double mutant embryos. The double mutant phenotypes were more severely affected by the pho maternal effect mutation than in zygotic mutant background, suggesting dosage-dependent processes. Taken together, these results provide genetic evidence of an interaction between PHO with other Polycomb group proteins at the embryonic and adult stages, and of the functioning of PHO as a component of the PcG complex.  相似文献   

10.
11.
To understand the genetic regulation of vegetative to reproductive transition in higher plants, further characterization of the Arabidopsis mutant embryonic flower1, emf1, was conducted. Using three flowering symptoms, we showed that emf1 mutants could only grow reproductive and not rosette shoots under five different growth conditions. The mutant embryos did not produce the typical tunica–corpus shoot apical structures at the heart-, torpedo-, and mature stages. The divergent shoot apical development during mutant and wild-type embryogenesis indicated that the wild-type EMF1 gene was expressed in early embryogenesis. Mutations in the EMF1 gene affected the embryonic shoot apical development and caused the germinating embryo and regenerating callus to grow inflorescence, instead of rosette, shoots. Our results support the hypothesis that the EMF1 gene regulates the switch between vegetative and reproductive growth in Arabidopsis.  相似文献   

12.
13.
14.
The Arabidopsis FERTILIZATION-INDEPENDENT ENDOSPERM (FIE) polycomb group (PcG) protein, a WD40 homologue of Drosophila extra sex comb (ESC), regulates endosperm and embryo development and represses flowering during embryo and seedling development. As fie alleles are not transmitted maternally, homozygous mutant plants cannot be obtained. To study FIE function during the entire plant life cycle, we used Arabidopsis FIE co-suppressed plants. Low FIE level in these plants produced dramatic morphological aberrations, including loss of apical dominance, curled leaves, early flowering and homeotic conversion of leaves, flower organs and ovules into carpel-like structures. These morphological aberrations are similar to those exhibited by plants overexpressing AGAMOUS (AG) or CURLY LEAF (clf) mutants. Furthermore, the aberrant leaf morphology of FIE-silenced and clf plants correlates with de-repression of the class I KNOTTED-like homeobox (KNOX) genes including KNOTTED-like from Arabidopsis thaliana 2 (KNAT2) and SHOOTMERISTEMLESS (STM), whereas BREVIPEDICELLUS (BP) was upregulated in FIE-silenced plants, but not in the clf mutant. Thus, FIE is essential for the control of shoot and leaf development. Yeast two-hybrid and pull-down assays demonstrate that FIE interacts with CLF. Collectively, the morphological characteristics, together with the molecular and biochemical data presented in this work, strongly suggest that in plants, as in mammals and insects, PcG proteins control expression of homeobox genes. Our findings demonstrate that the versatility of the plant FIE function, which is derived from association with different SET (SU (VAR)3-9, E (Z), Trithorax) domain PcG proteins, results in differential regulation of gene expression throughout the plant life cycle.  相似文献   

15.
The genes controlling the timing of the transition from vegetative to reproductive growth are likely candidates for regulators of genes initiating floral development. We have investigated the interaction of one particular gene controlling flowering time, FCA, with the meristem identity-genes TERMINAL FLOWER 1 (TFL1), APETALA 1 (AP1) and LEAFY (LFY) and the floral repression gene EMBRYONIC FLOWER 1 (EMF1). Double mutant combinations were generated and the phenotypes characterized. The influence of strong and intermediate fca mutant alleles on the phenotype conferred by a 35S-LFY transgene was also analysed. The results support a model where FCA function promotes flowering in multiple pathways, one leading to activation of LFY and AP1, and another acting in parallel with LFY and AP1. Only the latter pathway is predicted to be non-functional in the intermediate fca-4 allele. The results are also consistent with AP1 and TFL1 negatively regulating FCA function. Combination of Columbia fca and emf1 mutant alleles confirmed that FCA is required for the early flowering of emf1. EMF1 and FCA are therefore likely to operate in different floral pathways.  相似文献   

16.
17.
18.
19.
20.
Polycomb group and trithorax group proteins in Arabidopsis   总被引:1,自引:0,他引:1  
Polycomb group (PcG) and trithorax group (trxG) proteins form molecular modules of a cellular memory mechanism that maintains gene expression states established by other regulators. In general, PcG proteins are responsible for maintaining a repressed expression state, whereas trxG proteins act in opposition to maintain an active expression state. This mechanism, first discovered in Drosophila and subsequently in mammals, has more recently been studied in plants. The characterization of several Polycomb Repressive Complex 2 (PRC2) components in Arabidopsis thaliana constituted a first breakthrough, revealing key roles of PcG proteins in the control of crucial plant developmental processes. Interestingly, the recent identification of plant homologues of the Drosophila trithorax protein suggests a conservation of both the PcG and trxG gene regulatory system in plants. Here, we review the current evidence for the role of PcG and trxG proteins in the control of plant development, their biochemical functions, their interplay in maintaining stable expression states of their target genes, and point out future directions which may help our understanding of PcG and trxG function in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号