首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Secondary transitions from terrestrial to marine life provide remarkable examples of evolutionary change. Although the maintenance of osmotic balance poses a major challenge to secondarily marine vertebrates, its potential role during evolutionary transitions has not been assessed. In the current study, we investigate the role of oceanic salinity as a proximate physiological challenge for snakes during the phylogenetic transition from the land to the sea. Large‐scale biogeographical analyses using the four extant lineages of marine snakes suggest that salinity constrains their current distribution, especially in groups thought to resemble early transitional forms between the land and the sea. Analyses at the species‐level suggest that a more efficient salt‐secreting gland allows a species to exploit more saline, and hence larger, oceanic areas. Salinity also emerged as the strongest predictor of sea snake richness. Snake species richness was negatively correlated with mean annual salinity, but positively correlated with monthly variation in salinity. We infer that all four independent transitions from terrestrial to marine life in snakes may have occurred in the Indonesian Basin, where salinity is low and seasonally variable. More generally, osmoregulatory challenges may have influenced the evolutionary history and ecological traits of other secondarily marine vertebrates (turtles, birds and mammals) and may affect the impact of climate change on marine vertebrates.  相似文献   

2.
海洋生态系统稳定同位素基线的选取   总被引:1,自引:0,他引:1  
贡艺  陈玲  李云凯 《生态学杂志》2017,28(7):2399-2404
稳定同位素技术在海洋食物网研究中得到了广泛的应用,但在分析海洋生物食性和营养级时,需要选择某种生物或物质的稳定同位素值作为基线.本文综述了河口和海湾、浅海、大洋及深海4类典型海洋生态系统稳定同位素基线的选取,分析了影响稳定同位素基线选择的因素,以及特定化合物稳定同位素在消除基线时空异质性中的潜在价值,并对目前存在的问题以及今后的研究方向进行了展望,以期为国内学者进一步深入开展海洋生态系统的稳定同位素生态学研究提供有益参考.  相似文献   

3.
We investigated morphological adaptations to aquatic life within animals that exhibit a structurally simple, elongate body form, i.e., snakes. This linear body plan should impose different biomechanical constraints than the classical streamlined body shape associated with propulsion by fins, feet, or wings. Our measurements of general body shape of terrestrial, amphibious, and marine snakes (all from the same phylogenetic lineage, the Elapidae) show that seasnakes display specialized morphological attributes for life in water. Most notably, the cross‐sectional body shape is circular in terrestrial snakes but dorso‐ventrally elongated in seasnakes (due to a prominent ventral keel); amphibious species (sea kraits) exhibit an intermediate shape. The tail of amphibious and marine species (a major propulsive structure during swimming) is higher and thinner than in terrestrial snakes (i.e., paddle‐shaped) but shorter relative to body length. The evolution of a laterally compressed shape has been achieved by an increase in body height rather than a decrease in body width, possibly reflecting selection for more effective propulsive thrust, and for an ability to maintain hydrodynamic efficiency despite the minor bodily distension inevitably caused by prey items and developing offspring. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc  相似文献   

4.
An increasing number of short‐term experimental studies show significant effects of projected ocean warming and ocean acidification on the performance on marine organisms. Yet, it remains unclear if we can reliably predict the impact of climate change on marine populations and ecosystems, because we lack sufficient understanding of the capacity for marine organisms to adapt to rapid climate change. In this review, we emphasise why an evolutionary perspective is crucial to understanding climate change impacts in the sea and examine the approaches that may be useful for addressing this challenge. We first consider what the geological record and present‐day analogues of future climate conditions can tell us about the potential for adaptation to climate change. We also examine evidence that phenotypic plasticity may assist marine species to persist in a rapidly changing climate. We then outline the various experimental approaches that can be used to estimate evolutionary potential, focusing on molecular tools, quantitative genetics, and experimental evolution, and we describe the benefits of combining different approaches to gain a deeper understanding of evolutionary potential. Our goal is to provide a platform for future research addressing the evolutionary potential for marine organisms to cope with climate change.  相似文献   

5.
Human population density within 100 km of the sea is approximately three times higher than the global average. People in this zone are concentrated in coastal cities that are hubs for transport and trade – which transform the marine environment. Here, we review the impacts of three interacting drivers of marine urbanization (resource exploitation, pollution pathways and ocean sprawl) and discuss key characteristics that are symptomatic of urban marine ecosystems. Current evidence suggests these systems comprise spatially heterogeneous mosaics with respect to artificial structures, pollutants and community composition, while also undergoing biotic homogenization over time. Urban marine ecosystem dynamics are often influenced by several commonly observed patterns and processes, including the loss of foundation species, changes in biodiversity and productivity, and the establishment of ruderal species, synanthropes and novel assemblages. We discuss potential urban acclimatization and adaptation among marine taxa, interactive effects of climate change and marine urbanization, and ecological engineering strategies for enhancing urban marine ecosystems. By assimilating research findings across disparate disciplines, we aim to build the groundwork for urban marine ecology – a nascent field; we also discuss research challenges and future directions for this new field as it advances and matures. Ultimately, all sides of coastal city design: architecture, urban planning and civil and municipal engineering, will need to prioritize the marine environment if negative effects of urbanization are to be minimized. In particular, planning strategies that account for the interactive effects of urban drivers and accommodate complex system dynamics could enhance the ecological and human functions of future urban marine ecosystems.  相似文献   

6.
Secondary marine organisms belong to groups of terrestrial ancestry which have recolonized marine habitats. Some of them are, to various degrees, still dependent on the terrestrial habitat where they originated, which imposes certain limits in the expansion of their distribution range. This makes them an ideal subject for historical reconstruction. Here I perform biogeographical analyses on the global distribution of 12 groups of land-dependent secondary marine plants and animals (mangrove trees, sea turtles, sea snakes, seabirds and seals). When all groups are taken together, species diversity shows a unique bimodal pattern for each hemisphere, with high values in cold-temperate and tropical regions, but low values in mid-latitude regions. None of the individual groups considered reaches its highest species concentration in mid-latitude regions. This is shown to be due to the existence of three different species assemblages, inhabiting the three species-rich latitudinal bands (northern cold-temperate, tropical, and southern cold-temperate), and intermixing to a limited degree in the species-poor mid-latitude bands. This is evidence that secondary marine organisms diversified independently in cold-temperate and tropical regions, and strongly suggests that colonization from terrestrial habitats took place independently in the three species-rich latitudinal bands. Different constraints in the terrestrial habitat of origin are put forward as evolutionary incentives for colonizing the sea: glaciation processes in cold regions and competition in tropical regions.  相似文献   

7.
Chemicals are a frequent means whereby organisms defend themselves against predators, competitors, parasites, microbes, and other potentially harmful organisms. Much progress has been made in understanding how a phylogenetic diversity of organisms living in a variety of environments uses chemical defenses. Chief among these advances is determining the molecular identity of defensive chemicals and the roles they play in shaping interactions between individuals. Some progress has been made in deciphering the molecular, cellular, and systems level mechanisms underlying these interactions, as well as how these interactions can lead to structuring of communities and even ecosystems. The neuroecological approach unifies practices and principles from these diverse disciplines and at all scales as it attempts to explain in a single conceptual framework the abundances of organisms and the distributions of species within natural habitats. This article explores the neuroecology of chemical defenses with a focus on aquatic organisms and environments. We review the concept of molecules of keystone significance, including examples of how saxitoxin and tetrodotoxin can shape the organization and dynamics of marine and riparian communities, respectively. We also describe the current status and future directions of a topic of interest to our research group-the use of ink by marine molluscs, especially sea hares, in their defense. We describe a diversity of molecules and mechanisms mediating the protective effects of sea hares' ink, including use as chemical defenses against predators and as alarm cues toward conspecifics, and postulate that some defensive molecules may function as molecules of keystone significance. Finally, we propose future directions for studying the neuroecology of the chemical defenses of sea hares and their molluscan relatives, the cephalopods.  相似文献   

8.
9.
Global warming affects the aquatic ecosystems, accelerating pathogenic microorganisms' and toxic microalgae's growth and spread in marine habitats, and in bivalve molluscs. New parasite invasions are directly linked to oceanic warming. Consumption of pathogen-infected molluscs impacts human health at different rates, depending, inter alia, on the bacteria taxa. It is therefore necessary to monitor microbiological and chemical contamination of food. Many global cases of poisoning from bivalve consumption can be traced back to Mediterranean regions. This article aims to examine the marine bivalve's infestation rate within the scope of climate change, as well as to evaluate the risk posed by climate change to bivalve welfare and public health. Biological and climatic data literature review was performed from international scientific sources, Greek authorities and State organizations. Focusing on Greek aquaculture and bivalve fisheries, high-risk index pathogenic parasites and microalgae were observed during summer months, particularly in Thermaikos Gulf. Considering the climate models that predict further temperature increases, it seems that marine organisms will be subjected in the long term to higher temperatures. Due to the positive linkage between temperature and microbial load, the marine areas most affected by this phenomenon are characterized as ‘high risk’ for consumer health.  相似文献   

10.
The world's oceans are highly impacted by climate change and other human pressures, with significant implications for marine ecosystems and the livelihoods that they support. Adaptation for both natural and human systems is increasingly important as a coping strategy due to the rate and scale of ongoing and potential future change. Here, we conduct a review of literature concerning specific case studies of adaptation in marine systems, and discuss associated characteristics and influencing factors, including drivers, strategy, timeline, costs, and limitations. We found ample evidence in the literature that shows that marine species are adapting to climate change through shifting distributions and timing of biological events, while evidence for adaptation through evolutionary processes is limited. For human systems, existing studies focus on frameworks and principles of adaptation planning, but examples of implemented adaptation actions and evaluation of outcomes are scarce. These findings highlight potentially useful strategies given specific social–ecological contexts, as well as key barriers and specific information gaps requiring further research and actions.  相似文献   

11.
In light of current global changes to ecosystem function (e.g. climate change, trophic downgrading, and invasive species), there has been a recent surge of interest in exploring differences in nutrient cycling among ecosystem types. In particular, a growing awareness has emerged concerning the importance of scavenging in food web dynamics, although no studies have focused specifically on exploring differences in carrion consumption between aquatic and terrestrial ecosystems. In this forum we synthesize the scavenging literature to elucidate differences in scavenging dynamics between terrestrial and marine ecosystems, and identify areas where future research is needed to more clearly understand the role of carrion consumption in maintaining ecosystem function within each of these environments. Although scavenging plays a similar functional role in terrestrial and aquatic food webs, here we suggest that several fundamental differences exist in scavenging dynamics among these ecosystem types due to the unique selection pressures imposed by the physical properties of water and air. In particular, the movement of carcasses in marine ecosystems (e.g. wave action, upwelling, and sinking) diffuses biological activity associated with scavenging and decomposition across large, three‐dimensional spatial scales, creating a unique spatial disconnect between the processes of production, scavenging, and decomposition, which in contrast are tightly linked in terrestrial ecosystems. Moreover, the limited role of bacteria and temporal stability of environmental conditions on the sea floor appears to have facilitated the evolution of a much more diverse community of macrofauna that relies on carrion for a higher portion of its nutrient consumption than is present in terrestrial ecosystems. Our observations are further discussed as they pertain to the potential impacts of climate change and trophic downgrading (i.e. removal of apex consumers from ecosystems) on scavenging dynamics within marine and terrestrial ecosystems.  相似文献   

12.
Global warming is a nonlinear process, and temperature may increase in a stepwise manner. Periods of abrupt warming can trigger persistent changes in the state of ecosystems, also called regime shifts. The responses of organisms to abrupt warming and associated regime shifts can be unlike responses to periods of slow or moderate change. Understanding of nonlinearity in the biological responses to climate warming is needed to assess the consequences of ongoing climate change. Here, we demonstrate that the population dynamics of a long‐lived, wide‐ranging marine predator are associated with changes in the rate of ocean warming. Data from 556 colonies of black‐legged kittiwakes Rissa tridactyla distributed throughout its breeding range revealed that an abrupt warming of sea‐surface temperature in the 1990s coincided with steep kittiwake population decline. Periods of moderate warming in sea temperatures did not seem to affect kittiwake dynamics. The rapid warming observed in the 1990s may have driven large‐scale, circumpolar marine ecosystem shifts that strongly affected kittiwakes through bottom‐up effects. Our study sheds light on the nonlinear response of a circumpolar seabird to large‐scale changes in oceanographic conditions and indicates that marine top predators may be more sensitive to the rate of ocean warming rather than to warming itself.  相似文献   

13.
The first decade of the new millennium saw a flurry of experiments to establish a mechanistic understanding of how climate change might transform the global biota, including marine organisms. However, the biophysical properties of the marine environment impose challenges to experiments, which can weaken their inference space. To facilitate strengthening the experimental evidence for possible ecological consequences of climate change, we reviewed the physical, biological and procedural scope of 110 marine climate change experiments published between 2000 and 2009. We found that 65% of these experiments only tested a single climate change factor (warming or acidification), 54% targeted temperate organisms, 58% were restricted to a single species and 73% to benthic invertebrates. In addition, 49% of the reviewed experiments had issues with the experimental design, principally related to replication of the main test‐factors (temperature or pH), and only 11% included field assessments of processes or associated patterns. Guiding future research by this inventory of current strengths and weaknesses will expand the overall inference space of marine climate change experiments. Specifically, increased effort is required in five areas: (i) the combined effects of concurrent climate and non‐climate stressors; (ii) responses of a broader range of species, particularly from tropical and polar regions as well as primary producers, pelagic invertebrates, and fish; (iii) species interactions and responses of species assemblages, (iv) reducing pseudo‐replication in controlled experiments; and (v) increasing realism in experiments through broad‐scale observations and field experiments. Attention in these areas will improve the generality and accuracy of our understanding of climate change as a driver of biological change in marine ecosystems.  相似文献   

14.
A North Adriatic centenarian: The marine research station at Rovinj   总被引:1,自引:0,他引:1  
The institute in Rovinj was founded in 1891 as the field station of the Berlin Aquarium. It soon gained in scientific importance. From 1911, it was governed by various scientific bodies, such as the ‘Kaiser-Wilhelm-Gesellschaft zur Förderung der Wissenschaften’, the ‘Reale Comitato Talassografico Italiano’, and the ‘Jugoslavenska Akademija znanosti i umjetnosti’. At present, it is a department of the ‘Ru?er Bo?kovi?’ Institute, called the ‘Center for Marine Research Rovinj’. In the past hundred years, the Rovinj station experienced several ascents and declines in its development: both in the First and Second World Wars the station's scientific equipment, research vessels, library and reference collections were dispersed, and from 1945–1948 the station was closed. But in “happier” periods, rich support by the state and international bodies favoured the increase in research facilities and promoted interest among visiting scientists. The station has always been involved in studies of the Adriatic Sea, especially in its northern part. It contributed much to general knowledge of oceanography, of the physics and chemistry of the sea, but its paramount contribution is to various disciplines of marine biological sciences. Applied research, however, was most oriented to fisheries biology, especially shellfish culture, to resource studies, and, recently, to toxicology, bacteriology, eutrophication and pollution monitoring. The international approach in science and applied research was always favoured. At present, the Center is well equipped for complex coastal and offshore field- and laboratory research, and maintains facilities for graduate and postgraduate teaching. Scientific dissemination is also promoted by the public aquarium and professional meetings.  相似文献   

15.
The effects of anthropogenic global environmental change on biotic and abiotic processes have been reported in aquatic systems across the world. Complex synergies between concurrent environmental stressors and the resilience of the system to regime shifts, which vary in space and time, determine the capacity for marine systems to maintain structure and function with global environmental change. Consequently, an interdisciplinary approach that facilitates the development of new methods for the exchange of knowledge between scientists across multiple scales is required to effectively understand, quantify and predict climate impacts on marine ecosystem services. We use a literature review to assess the limitations and assumptions of current pathways to exchange interdisciplinary knowledge and the transferability of research findings across spatial and temporal scales and levels of biological organization to advance scientific understanding of global environmental change in marine systems. We found that species‐specific regional scale climate change research is most commonly published, and “supporting” is the ecosystem service most commonly referred to in publications. In addition, our paper outlines a trajectory for the future development of integrated climate change science for sustaining marine ecosystem services such as investment in interdisciplinary education and connectivity between disciplines.  相似文献   

16.
海洋微生物的化学生态学研究进展   总被引:1,自引:0,他引:1  
徐年军  严小军 《应用生态学报》2006,17(12):2436-2440
近年来,海洋生物的化学生态学研究已成为国际化学生态学研究的亮点之一.该领域的研究不仅为生物进化研究提供了理论依据,也对海洋生态养殖、海洋生态环境保护以及海洋资源的可持续发展具有重要意义.本文从海洋动物、植物、微生物三方面综述了它们与海洋微生物之间的化学生态学关系.海洋动物与微生物的化学生态学作用主要包括抗菌、抗附着、共生3种关系.以发现具有生态学效应的化学信号物质的分子结构为主线,介绍了海洋植物和微生物方面的研究进展,并对该领域的关键性问题和发展方向进行了展望.  相似文献   

17.
Responses of ecosystems to environmental changes vary greatly across habitats, organisms and observational scales. The Quaternary fossil record of the Po Basin demonstrates that marine communities of the northern Adriatic re-emerged unchanged following the most recent glaciation, which lasted approximately 100 000 years. The Late Pleistocene and Holocene interglacial ecosystems were both dominated by the same species, species turnover rates approximated predictions of resampling models of a homogeneous system, and comparable bathymetric gradients in species composition, sample-level diversity, dominance and specimen abundance were observed in both time intervals. The interglacial Adriatic ecosystems appear to have been impervious to natural climate change either owing to their persistence during those long-term perturbations or their resilient recovery during interglacial phases of climate oscillations. By contrast, present-day communities of the northern Adriatic differ notably from their Holocene counterparts. The recent ecosystem shift stands in contrast to the long-term endurance of interglacial communities in face of climate-driven environmental changes.  相似文献   

18.
The substantial loss in the stratospheric ozone layer and consequent increase in solar ultraviolet radiation on the earth’s surface have augmented the interest in searching for natural photoprotective compounds in organisms of marine as well as freshwater ecosystems. A number of photoprotective compounds such as mycosporine-like amino acids (MAAs), scytonemin, carotenoids and several other UV-absorbing substances of unknown chemical structure have been identified from different organisms. MAAs form the most common class of UV-absorbing compounds known to occur widely in various marine organisms; however, several compounds having UV-screening properties still need to be identified. The synthesis of scytonemin, a predominant UV-A-photoprotective pigment, is exclusively reported in cyanobacteria. Carotenoids are important components of the photosynthetic apparatus that serve both light-harvesting and photoprotective functions, either by direct quenching of the singlet oxygen or other toxic reactive oxygen species or by dissipating the excess energy in the photosynthetic apparatus. The production of photoprotective compounds is affected by several environmental factors such as different wavelengths of UVR, desiccation, nutrients, salt concentration, light as well as dark period, and still there is controversy about the biosynthesis of various photoprotective compounds. Recent studies have focused on marine organisms as a source of natural bioactive molecules having a photoprotective role, their biosynthesis and commercial application. However, there is a need for extensive work to explore the photoprotective role of various UV-absorbing compounds from marine habitats so that a range of biotechnological and pharmaceutical applications can be found.  相似文献   

19.
Climate change is increasingly impacting marine protected areas (MPAs) and MPA networks, yet adaptation strategies are rarely incorporated into MPA design and management plans according to the primary scientific literature. Here we review the state of knowledge for adapting existing and future MPAs to climate change and synthesize case studies (n = 27) of how marine conservation planning can respond to shifting environmental conditions. First, we derive a generalized conservation planning framework based on five published frameworks that incorporate climate change adaptation to inform MPA design. We then summarize examples from the scientific literature to assess how conservation goals were defined, vulnerability assessments performed and adaptation strategies incorporated into the design and management of existing or new MPAs. Our analysis revealed that 82% of real‐world examples of climate change adaptation in MPA planning derive from tropical reefs, highlighting the need for research in other ecosystems and habitat types. We found contrasting recommendations for adaptation strategies at the planning stage, either focusing only on climate refugia, or aiming for representative protection of areas encompassing the full range of expected climate change impacts. Recommendations for MPA management were more unified and focused on adaptative management approaches. Lastly, we evaluate common barriers to adopting climate change adaptation strategies based on reviewing studies which conducted interviews with MPA managers and other conservation practitioners. This highlights a lack of scientific studies evaluating different adaptation strategies and shortcomings in current governance structures as two major barriers, and we discuss how these could be overcome. Our review provides a comprehensive synthesis of planning frameworks, case studies, adaptation strategies and management actions which can inform a more coordinated global effort to adapt existing and future MPA networks to continued climate change.  相似文献   

20.
Secondarily marine vertebrates are thought to live independently of fresh water. Here, we demonstrate a paradigm shift for the widely distributed pelagic sea snake, Hydrophis (Pelamis) platurus, which dehydrates at sea and spends a significant part of its life in a dehydrated state corresponding to seasonal drought. Snakes that are captured following prolonged periods without rainfall have lower body water content, lower body condition and increased tendencies to drink fresh water than do snakes that are captured following seasonal periods of high rainfall. These animals do not drink seawater and must rehydrate by drinking from a freshwater lens that forms on the ocean surface during heavy precipitation. The new data based on field studies indicate unequivocally that this marine vertebrate dehydrates at sea where individuals may live in a dehydrated state for possibly six to seven months at a time. This information provides new insights for understanding water requirements of sea snakes, reasons for recent declines and extinctions of sea snakes and more accurate prediction for how changing patterns of precipitation might affect these and other secondarily marine vertebrates living in tropical oceans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号