首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The accessibility of embryonic and adult neurons within invertebrate nervous systems has made them excellent subjects for neurobiological study. The ability to readily identify individual neurons, together with their great capacity for regeneration, has been especially beneficial to investigations of synapse formation and the specificity of neuronal connectivity. Many invertebrate neurons survive for long periods following isolation into primary cell culture. In addition, they readily extend new neuritic arbors and form electrical and chemical connections at sites of contact. Thus, cell culture approaches have allowed neuroscientists greater access to, and resolution of, events underlying neurite outgrowth and synaptogenesis. Studies of identified neuromuscular synapses ofHelisoma have determined a number of signaling mechanisms involved in transsynaptic communication at sites of neuron-target contact. At these sites, both anterograde and retrograde signals regulate the transformation of growth cones into functional presynaptic terminals. We have found that specific muscle targets induce both global and local changes in neurotransmitter secretion and intracellular calcium handling. Here we review recent studies of culturedHelisoma synapses and discuss the mechanisms thought to govern chemical synapse formation in these identified neurons and those of other invertebrate species.  相似文献   

2.
3.
4.
5.
Individual cholinoceptive neurons express high levels of different neuronal nicotinic acetylcholine receptor (nAChR) subtypes, and target them to the appropriate synaptic regions for proper function. This review focuses on the intercellular and intracellular processes that regulate nAChR expression in vertebrate peripheral nervous system (PNS) and central nervous system (CNS) neurons. Specifically, we discuss the cellular and molecular mechanisms that govern the induction and maintenance of nAChR expression-innervation, target tissue interactions, soluble factors, and activity. We define the regulatory principles of interneuronal nicotinic synapse differentiation that have emerged from these studies. We also discuss the molecular players that target nAChRs to the surface membrane and the interneuronal synapse.  相似文献   

6.
7.
Hardie RC 《Current biology : CB》2003,13(19):R775-R777
Light induces the migration of arrestin to the photosensitive membrane in both vertebrate and invertebrate photoreceptors. New work has identified a phosphoinositide lipid binding domain in Drosophila arrestin and implicates PIP(3) in control of arrestin translocation.  相似文献   

8.
Shen K 《Neuron》2006,49(3):323-325
Synapse formation is initiated by cell-cell contact between appropriate pre- and postsynaptic cells and is followed by recruitment of protein complexes in both pre- and postsynaptic compartments. In this issue of Neuron, Lyles et al. show that in cultured Aplysia neurons, clustering of an mRNA at nascent synapses is not only induced by the recognition between synaptic partners, but is also required for further synaptic development and maintenance.  相似文献   

9.
The brain is remarkably responsive to its interactions with the environment, and its morphology is altered by experience in measurable ways. Histological examination of the brains of animals exposed to either a complex ('enriched') environment or learning paradigm, compared with appropriate controls, has illuminated the nature of experience-induced morphological plasticity in the brain. For example, this research reveals that changes in synapse number and morphology are associated with learning and are stable, in that they persist well beyond the period of exposure to the learning experience. In addition, other components of the nervous system also respond to experience: oligodendrocytes and axonal myelination might also be permanently altered, whereas changes in astrocytes and cerebrovasculature are more transient and appear to be activity- rather than learning-driven. Thus, experience induces multiple forms of plasticity in the brain that are apparently regulated, at least in part, by independent mechanisms.  相似文献   

10.
11.
Previously, a coculture system of accessory olfactory bulb (AOB) neurons and vomeronasal (VN) neurons was established for studying the functional roles of AOB neurons in pheromonal signal processing. In this study, the effect of VN neurons on the development of AOB neurons was examined in a coculture system. Spine density was quantitatively measured for various culture periods of 21, 28, 36, and 42 days in vitro. The densities of dendritic spines were lower in the coculture than in single culture for all periods in vitro. Synapse formation on spines was analyzed immunocytochemically using an anti-synaptophysin antibody. The ratio of the density of synaptophysin-immunopositive spine/total spine density was larger in the coculture than in the single culture. The volume of spine head was larger in the coculture than in single culture. These changes were not observed in the coculture in which there was no physical contact between AOB neurons and VN neurons. These observations suggest that synapse formation on the spines of AOB neurons is modified by physical contact with VN neurons.  相似文献   

12.
《Neuron》2023,111(11):1776-1794.e10
  1. Download : Download high-res image (224KB)
  2. Download : Download full-size image
  相似文献   

13.
Optical traps exploit the radiation forces of laser light to manipulate microscopic particles. The ability to manipulate biological material and quantify the force required has been exploited in the biosciences; from the isolation of single cells to kinetic measurements of single motor molecules. This review describes the theory of optical trapping and using recent publications gives examples of how it has been employed across a broad spectrum of biological research.  相似文献   

14.
Ecological theory and nature conservation have traditionally relied solely on observed local diversity. In this review, we recommend including those species that are absent from an ecosystem but which belong to its species pool; that is, all species in the region that can potentially inhabit those particular ecological conditions. We call the set of absent species 'dark diversity'. Relating local and dark diversities enables biodiversity comparisons between regions, ecosystems and taxonomic groups, and the evaluation of the roles of local and regional processes in ecological communities. Dark diversity can also be used to counteract biodiversity loss and to estimate the restoration potential of ecosystems. We illustrate the dark diversity concept by globally mapping plant dark diversity and the local:dark diversity ratio.  相似文献   

15.
Identified leech neurons in culture are providing novel insights to the signals underlying synapse formation and function. Identified neurons from the central nervous system of the leech can be removed individually and plated in culture, where they retain their characteristic physiological properties, grow neurites, and form specific synapses that are directly accessible by a variety of approaches. Synapses between cultured neurons can be chemical or electrical (either rectifying or not) or may not form, depending on the neuronal identities. Furthermore, the characteristics of these synapses depend on the regions of the cells that come into contact. The formation and physiology of synapses between the Retzius cell and its partners have been well characterized. Retzius cells form purely chemical, inhibitory synapses with pressuresensitive (P) cells where serotonin (5-HT) is the transmitter. Retzius cells synthesize 5-HT, which is stored in vesicles that recycle after 5-HT is secreted on stimulation. The release of 5-HT is quantal, calcium-dependent, and shows activity-dependent facilitation and depression. Anterograde and retrograde signals during synapse formation modify calcium currents, responses to 5-HT, and neurite outgrowth. The nature of these synaptogenic signals is being elucidated. For example, contact specifically with Retzius cells induces a localized selection of transmitter responses in postsynaptic P cells. This effect is signaled by tyrosine phosphorylation prior to synapse formation. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
Adult neurons, isolated from the salamander retina, were maintained in low-density cell culture and examined for synapse formation by electrophysiological and electron microscopic techniques. Morphologically identifiable rod, cone, horizontal, bipolar, and amacrine/ganglion cells survived for many months, grew processes, and formed numerous cell contacts. Intracellular recordings showed the presence of a variety of voltage- and time-dependent conductances and both electrical and chemical transmission among these cells. At the ultrastructural level, gap junctions, monad ribbon synapses, and conventional synapses, like those present in the intact retina, were observed in sibling cultures. Thus, all major classes of adult retinal neurons, in addition to ganglion cells, are able to regenerate processes and reform synapses. The regenerated synaptic contacts are functional and structurally diverse.  相似文献   

17.
18.
Berardi N  Pizzorusso T  Maffei L 《Neuron》2004,44(6):905-908
The effects of monocular deprivation (MD) on the ocular dominance of visual cortical neurons are a paradigmatic example of experience-dependent plasticity. Here we review recent data showing that extracellular matrix (ECM) plays an important role in the control of experience-dependent plasticity both in the developing and adult visual cortex.  相似文献   

19.
20.
The signal transduction process involved in the development of the nerve terminal is an intriguing question in developmental neurobiology. During the formation of the neuromuscular junction, presynaptic development is induced by growth cone's contact with the target muscle cell. Fluorescence microscopy with specific markers has made it possible to follow signalling events during this process. By using fluorescent calcium indicators, such as fura-2 and fluo-3, we found that a rise in intracellular calcium is elicited in the growth cone upon its contact with a target, and this calcium signal can also be elicited by local application of basic fibroblast growth factor. To monitor the clustering of synaptic vesicles in response to target contact, the fluorescent vesicular probe FMl-43 was used. With this probe, we observed that packets of synaptic vesicle are already present along the length of naive neurite, which has not encountered its synaptic target. The activity-dependent loading of FMl-43 indicates that these packets can undergo exocytosis and endocytosis upon depolarization. Time-lapse recording showed that these packets are quite mobile. Upon target contact, synaptic vesicles become clustered and immobilized at the contact site. The methodology and instrumentation used in these studies are described in this article. 1998 © Chapman & Hall  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号